Papers of Molecular Dynamics by Prof. S. Maruyama

updated on 2021/09/27
For Publisher PDF files, Login ID and password are necessary. Contact maruyama [at] photon.t.u-tokyo.ac.jp for information.

2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1990-1996, 1986-1989

2021

  1. H. Meng, S. Maruyama, R. Xiang* and Nuo Yang*, Thermal conductivity of one-dimensional carbon-boron nitride van der Waals heterostructure: A molecular dynamics study, Int. J. Heat Mass Tran., (2021), 180, 121773-1-121773-6.
    [Publisher PDF] [DOI: 10.1016/j.ijheatmasstransfer.2021.121773] [ISI Times Cited: 0]

2020

  1. K. Hisama*, S. Chiashi, S. Maruyama and S. Okada*, Energetics and electronic structures of single walled carbon nanotubes encapsulated in boron nitride nanotubes, Appl. Phys. Express, (2020), 13, 015004-1-015004-4.
    [Publisher PDF] [DOI: 10.7567/1882-0786/ab5c02] [ISI Times Cited: 3]

2019

  1. R. Yoshikawa, K. Hisama, H. Ukai, Y. Takagi, T. Inoue, S. Chiashi*, S. Maruyama*, Molecular Dynamics of Chirality Definable Growth of Single-Walled Carbon Nanotubes, ACS Nano, (2019), 13, 6506-6512.
    [Publisher PDF] [DOI: 10.1021/acsnano.8b09754] [ISI Times Cited: 2]

2018

  1. K. Hisama, R. Yoshikawa, T. Matsuo, T. Noguchi, T. Kawasuzuki, S. Chiashi, S. Maruyama*, Growth Analysis of Single-Walled Carbon Nanotubes Based on Interatomic Potentials by Molecular Dynamics Simulation, J. Phys. Chem. C, (2018), 122-17, 9648-9653.
    [Publisher PDF] [DOI: 10.1021/acs.jpcc.7b12687] [ISI Times Cited: 4]

2017

  1. Y. Jiang and S. Maruyama, 6.3 Mirco/nanoscale phenomena related with boiling, Boiling: Research and Advances, (2017), 487-504.
    [
    Publisher PDF] [Cite: https://www.elsevier.com/books/isbn/9780081010105] [ISI Times Cited: 2]

2016

2015

  1. H. Koh, J. J. Cannon, T. Shiga, J. Shiomi, S. Chiashi, S. Maruyama*, Thermally induced non-linear vibration of single-walled carbon nanotubes, Phys. Rev. B, (2015), 92-2, 024306-1-024306-10.
    [Publisher PDF] [DOI: 10.1103/PhysRevB.92.024306] [ISI Times Cited: 9]

2014

2013

2012

  1. T. Shiga, S. Konabe, J. Shiomi, T. Yamamoto, S. Maruyama, S. Okada*, Graphene-Diamond Hybrid Structure as Spin-Polarized Conducting Wire with Thermally-Efficient Heat Sinks, Appl. Phys. Lett., (2012), 100-23, 233101-1-233101-4.
    [Publisher PDF] [DOI: 10.1063/1.4725485] [ISI Times Cited: 13]

  2. J.-H. Cha, S. Chiashi, J. Shiomi and S. Maruyama*, Generalized equation of thermal boundary conductance between SWNT and surrounding supercritical Lennard-Jones fluid - Derivation from Molecular Dynamics Simulations -, Int. J. Heat Mass Tran., (2012), 55-7-8, 2008-2013.
    [Publisher PDF] [DOI: 10.1016/j.ijheatmasstransfer.2011.11.056] [ISI Times Cited: 4]

  3. F. Nishimura, T. Shiga, S. Maruyama, K. Watanabe and J. Shiomi*, Thermal conductance of buckled carbon nanotubes, Jpn. J. Appl. Phys., (2012), 51-1, 015102-1-015102-5. (Spotlight: editors choice from APEX and JJAP).
    [Publisher PDF] [DOI: 10.1143/JJAP.51.015102] [ISI Times Cited: 12]

  4. J. Cannon*, T. J. H. Vlugt, D. Dubbeldam, S. Maruyama and J. Shiomi*, A simulation study on the adsorption properties of linear alkanes on closed nanotube bundles, J. Phys. Chem. B, (2012), 116-32, 9812-9819.
    [Publisher PDF] [DOI: 10.1021/jp3039225] [ISI Times Cited: 14]

  5. J. Cannon*, D. Kim, S. Maruyama and J. Shiomi*, Influence of Ion Size and Charge on Osmosis, J. Phys. Chem. B, (2012), 116-14, 4206-4211.
    [Publisher PDF] [DOI: 10.1021/jp2113363] [ISI Times Cited: 18]

2011

2010

  1. J. Shiomi* and S. Maruyama, Diffusive-Ballistic Heat Conduction Carbon Nanotubes and Nanographene Ribbons, Int. J. Thermophys., (2010), 31-10, 1945-1951.
    [Publisher PDF] [DOI: 10.1007/s10765-008-0516-8] [ISI Times Cited: 24]

  2. Y. Izu, J. Shiomi*, Y. Takagi, S. Okada and S. Maruyama*, Growth mechanism of single-walled carbon nanotube from catalytic reaction inside carbon nanotube template, ACS Nano, (2010), 4-8, 4769-4775.
    [Publisher PDF] [DOI: 10.1021/nn100461r] [ISI Times Cited: 7]

2009

  1. T. Yamamoto*, S. Konabe, J. Shiomi and S. Maruyama, Crossover from Ballistic to Diffusive Thermal Transport in Carbon Nanotubes, Appl. Phys. Express, (2009), 2-9, 095003-1-095003-3.
    [Publisher PDF] [DOI: 10.1143/APEX.2.095003] [ISI Times Cited: 32]

  2. Y. Lin*, J. Shiomi*, S. Maruyama and G. Amberg, Dielectric relaxation of water inside a single-walled carbon nanotube, Phys. Rev. B, (2009), 80-4, 045419-1-045419-7.
    [Publisher PDF] [DOI: 10.1103/PhysRevB.80.045419] [ISI Times Cited: 19]

  3. J. Shiomi* and S. Maruyama, Water transport inside a single-walled carbon nanotube driven by temperature gradient, Nanotechnology, (2009), 20-5, 055708-1-055708-5.
    [Publisher PDF] [DOI: 10.1088/0957-4484/20/5/055708] [ISI Times Cited: 69]

2008

  1. C. F. Carlborg, J. Shiomi* and S. Maruyama, Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices, Phys. Rev. B, (2008), 78, 205406-1-205406-8.
    [Publisher PDF] [DOI: 10.1103/PhysRevB.78.205406] [ISI Times Cited: 110]

  2. J. Shiomi and S. Maruyama*, Molecular Dynamics of Diffusive-Ballistic Heat Conduction in Single-Walled Carbon Nanotubes, Jpn. J. Appl. Phys., (2008), 47-4, 2005-2009.
    [Publisher PDF] [DOI: 10.1143/JJAP.47.2005] [ISI Times Cited: 112]

2007

  1. C. S. Wang, J. S. Chen*, J. Shiomi and S. Maruyama, A study on the thermal resistance over solid-liquid-vapor interfaces in a finite-space by a molecular dynamics method, Int. J. Therm. Sci., (2007), 46, 1203-1210.
    [Publisher PDF] [DOI: 10.1016/j.ijthermalsci.2007.01.009] [ISI Times Cited: 38]

  2. J. Shiomi, T. Kimura and S. Maruyama*, Molecular dynamics of ice-nanotube formation inside carbon nanotubes, J. Phys. Chem. C, (2007), 111-33, 12188-12193.
    [Publisher PDF] [DOI: 10.1021/jp071508s] [ISI Times Cited: 49]

  3. Y. Shibuta* and S. Maruyama, Bond-order potential for transition metal carbide cluster for the growth simulation of a single-walled carbon nanotube, Comp. Mater. Sci., (2007), 39, 842-848.
    [Publisher PDF] [DOI: 10.1016/j.commatsci.2006.10.007] [ISI Times Cited: 87]

  4. Y. Shibuta* and S. Maruyama, A molecular dynamics study of the effect of a substrate on catalytic metal clusters in nucleation process of single-walled carbon nanotubes, Chem. Phys. Lett., (2007), 437, 218-223.
    [Publisher PDF] [DOI: 10.1016/j.cplett.2007.02.019] [ISI Times Cited: 55]

2006

  1. S. Maruyama*, Y. Igarashi, Y. Taniguchi and J. Shiomi, Anisotropic Heat Transfer of Single-Walled Carbon Nanotubes, J. Therm. Sci. Tech.-JPN, (2006), 1-2, 138-148.
    [Publisher PDF] [DOI: 10.1299/jtst.1.138] [ISI Times Cited: 84]

  2. J. Shiomi and S. Maruyama*, Heat conduction of single-walled carbon nanotube isotope superlattice structures: A molecular dynamics study, Phys. Rev. B, (2006), 74, 155401-1-155401-6.
    [Publisher PDF] [DOI: 10.1103/PhysRevB.74.155401] [ISI Times Cited: 35]

  3. J. Shiomi and S. Maruyama*, Non-Fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations, Phys. Rev. B, (2006), 73, 205420-1-205420-7.
    [Publisher PDF] [DOI: 10.1103/PhysRevB.73.205420] [ISI Times Cited: 202]

  4. Y. Shibuta and S. Maruyama*, Molecular Dynamics of Generation Process of Double-Walled Carbon Nanotubes from Peapods, Heat Transfer - Asian Research, (2006), 35-4, 254-264.
    [Publisher PDF] [DOI: 10.1002/htj.20115] [ISI Times Cited: 8]

  5. Y. Watanabe*, H. Yamaguchi, M. Hashinokuchi, K. Sawabe, S. Maruyama, Y. Matsumoto, K. Shobatake, Energy transfer in hyperthermal Xe-graphite surface scattering, Eur. Phys. J. D, (2006), 38-1, 103-109.
    [Publisher PDF] [DOI: 10.1140/epjd/e2006-00030-6] [ISI Times Cited: 31]

  6. S. Maruyama*, Chapter 21. Molecular Dynamics Method for Micro/Nano Systems, Handbook of Numerical Heat Transfer, (2006), 659-695.
    [Publisher PDF] [DOI: MinkowyczIntl.pdf]

2005

  1. Y. Watanabe, H. Yamaguchi, M. Hashinokuchi, K. Sawabe*, S. Maruyama, Y. Matsumoto, K. Shobatake*, Trampoline motions in Xe-graphite (0001) surface scattering, Chem. Phys. Lett., (2005), 413, 331-334.
    [Publisher PDF] [DOI: 10.1016/j.cplett.2005.07.103] [ISI Times Cited: 33]

  2. J. Shiomi and S. Maruyama*, Non-Fourier Heat Conduction of Single-Walled Carbon Nanotubes, Therm. Sci. Eng., (2005), 13-4, 89-90. [Cite: http://www.htsj.or.jp/TSE/TSE13.html#13-04]

  3. S.-H. Choi and S. Maruyama*, Thermal Boundary Resistance at an Epitaxially Perfect Interface of Thin Films, Int. J. Therm. Sci., (2005), 44-6, 547-558.
    [Publisher PDF] [DOI: 10.1016/j.ijthermalsci.2004.12.006] [ISI Times Cited: 27]

2004

  1. S. Maruyama*, Molecular Dynamics Methods in Microscale Heat Transfer, Heat Transfer and Fluid Flow in Microchannel, Gian Piero Celata, (2004), 161-205.

  2. S.-H. Choi* and S. Maruyama, Variations in the Thermal Conductivity of Insulating Thin Films with Temperature and Pressure, J. Korean Phys. Soc., (2004), 45-4, 897-906.
    [Publisher PDF] [ISI Times Cited: 7]

  3. S. Shibuta and S. Maruyama*, Molecular Dynamics of Nucleation Process of Single-Walled Carbon Nanotubes, Therm. Sci. Eng., (2004), 12-4, 79-80. [Cite: http://www.htsj.or.jp/TSE/TSE12.html#12-04]

  4. S. Maruyama*, Y. Murakami, Y. Shibuta, Y. Miyauchi and S. Chiashi, Generation of Single-Walled Carbon Nanotubes from Alcohol and Generation Mechanism by Molecular Dynamics Simulations, J. Nanosci. Nanotechnol., (2004), 4-4, 360-367.
    [Publisher PDF] [DOI: 10.1166/jnn.2004.067] [ISI Times Cited: 30]

  5. S.-H. Choi, S. Maruyama, K.-K Kim* and J.-H. Lee, Feasibility Study of a New Model for the Thermal Boundary Resistance at Thin Film Interfaces, J. Korean Phys. Soc., (2004), 44-2, 317-325.
    [Publisher PDF] [ISI Times Cited: 8]

2003

  1. Y. Shibuta and S. Maruyama*, Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method, Chem. Phys. Lett., (2003), 382-3-4, 381-386.
    [Publisher PDF] [DOI: 10.1016/j.cplett.2003.10.080] [ISI Times Cited: 205]

  2. Y. Shibuta and S. Maruyama*, Molecular Dynamics in Formation Process of Single-Walled Carbon Nanotubes, Heat Transfer - Asian Research, (2003), 32-8, 690-699.
    [Publisher PDF] [DOI: 10.1002/htj.10123] [ISI Times Cited: 5]

  3. S.-H. Choi, S. Maruyama, K.-K Kim* and J.-H. Lee, Evaluation of the Phonon Mean Free Path in Thin Films by using Classical Molecular Dynamics, J. Korean Phys. Soc., (2003), 43-5, 747-753.
    [Publisher PDF] [ISI Times Cited: 40]

  4. D. Poulikakos*, S. Arcidiacono and S. Maruyama, Molecular Dynamics Simulation in Nanoscale Heat Transfer: A Review, Micro. Thermophys. Eng., (2003), 7-3, 181-206.
    [Publisher PDF] [DOI: 10.1080/10893950390219047] [ISI Times Cited: 47]

  5. S. Maruyama*, A Molecular Dynamics Simulation of Heat Conduction of a Finite Length Single-Walled Carbon Nanotube, Micro. Thermophys. Eng., (2003), 7-1, 41-50.[WORD(Lab.Only)]
    [Publisher PDF] [DOI: 10.1080/10893950390150467] [ISI Times Cited: 175]

2002

  1. S. Maruyama*, Molecular Dynamics Methods in Microscale Heat Transfer, Handbook of Heat Exchanger Update, (2002), 2.13.7-1-2.13.7-33.

  2. S. Maruyama* and Y. Shibuta, Molecular Dynamics in Formation Process of SWNTs, Mol. Cryst. Liq. Cryst., (2002), 387, 87-92.[WORD(Lab.Only)]
    [Publisher PDF] [DOI: 10.1080/10587250215242] [ISI Times Cited: 13]

  3. S. Maruyama*, T. Kimura and M.-C. Lu, Molecular Scale Aspects of Liquid Contact on a Solid Surface, Therm. Sci. Eng., (2002), 10-6, 23-29. [Cite: http://www.htsj.or.jp/TSE/TSE10.html#10-06]

  4. Y. Shibuta and S. Maruyama*, Molecular Dynamics Simulation of Generation Process of SWNTs, Physica B, (2002), 323-1-4, 187-189.[WORD(Lab.Only)]
    [Publisher PDF] [DOI: 10.1016/S0921-4526(02)00896-7] [ISI Times Cited: 68]

  5. S. Maruyama*, A Molecular Dynamics Simulation of Heat Conduction of Finite Length SWNTs, Physica B, (2002), 323-1-4, 193-195.[WORD(Lab.Only)]
    [Publisher PDF] [DOI: 10.1016/S0921-4526(02)00898-0] [ISI Times Cited: 273]

  6. S. Maruyama*, Endohedral Metallofullerene in Gas Phase, Endofullerenes: A New Family of Carbon Clusters, (2002), 273-293.[WORD(Lab.Only)]

  7. T. Kimura and S. Maruyama*, A Molecular Dynamics Simulation of Heterogeneous Nucleation of a Liquid Droplet on Solid Surface, Micro. Thermophys. Eng., (2002), 6-1, 3-13.[WORD(Lab.Only)] [DOI: 10.1080/108939502753428202] [ISI Times Cited: 50]

  8. S. Maruyama*, FT-ICR Reaction Experiments and Molecular Dynamics Simulations of Precursor Clusters for SWNTs, Perspectives of Fullerene Nanotechnology, (2002), 131-142.[WORD(Lab.Only)] [ISI Times Cited: 4]

2001

2000

  1. S. Maruyama* and T. Kimura, A Molecular Dynamics Simulation of a Bubble Nucleation on Solid Surface, Int. J. Heat Technol., (2000), 18-supplement 1, 69-74.

  2. S. Maruyama*, Molecular Dynamics Method for Microscale Heat Transfer, Advances in Numerical Heat Transfer, (2000), 2, 189-226.

  3. Y. Bayazitoglu*, S. Maruyama and P. Hos, Phase Change Studies Molecular Dynamics: A Computer Simulation, Int. J. Heat Technol., (2000), 18-supplement 2, 3-16.

1999

  1. Y. Yamaguchi and S. Maruyama*, A Molecular Dynamics Study on the Formation of Metallofullerene, Eur. Phys. J. D, (1999), 9-1-4, 385-388.
    [Publisher PDF] [DOI: 10.1007/s100530050462] [ISI Times Cited: 47]

  2. M. Shoji, Y. H. Mori and S. Maruyama*, Chapter 2: Representation of Solid-Liquid-Vapor Phase Interactions, Handbook of Phase Change: Boiling and Condensation, (1999), 41-61.

  3. Y. Yamaguchi and S. Maruyama*, A Molecular Dynamics Study on the Formation of Metallofullerene, Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, (1999), 7, 640-646.

  4. S. Maruyama* and T. Kimura, A Study on Thermal Resistance over a Solid-Liquid Interface by the Molecular Dynamics Method , Therm. Sci. Eng., (1999), 7-1, 63-68. [Cite: http://www.htsj.or.jp/TSE/TSE07.html#07-01]

  5. A. P. Bhansali, Y. Bayazitoglu* and S. Maruyama, Molecular Dynamics Simulation of an Evaporating Sodium Droplet, Int. J. Therm. Sci., (1999), 38-1, 66-74.
    [Publisher PDF] [DOI: 10.1016/S0035-3159(99)80017-8] [ISI Times Cited: 19]

1998

  1. S. Maruyama* and Y. Yamaguchi, A Molecular Dynamics Demonstration of Annealing to a Perfect C60 Structure, Chem. Phys. Lett., (1998), 286-3,4, 343-349.
    [Publisher PDF] [DOI: 10.1016/S0009-2614(98)00103-1] [ISI Times Cited: 81]

  2. Y. Yamaguchi and S. Maruyama*, A Molecular Dynamics Simulation of the Fullerene Formation Process, Chem. Phys. Lett., (1998), 286-3,4, 336-342.
    [Publisher PDF] [DOI: 10.1016/S0009-2614(98)00102-X] [ISI Times Cited: 129]

  3. S. Maruyama*, T. Kurashige, S. Matsumoto, Y. Yamaguchi and T. Kimura, Liquid Droplet in Contact with a Solid Surface, Micro. Thermophys. Eng., (1998), 2-1, 49-62.
    [Publisher PDF] [DOI: 10.1080/108939598200105 ] [ISI Times Cited: 83]

1997

  1. G. Chen*, K. E. Goodson, C. Grigoropoulos, M. C. Hipwell, D. Liepman, A. Majumdar, S. Maruyama, T. Thundat, C. L. Tien, N. C. Tien, Report of Workshop: Thermophysical Phenomena in Microscale Sensors, Devices, and Structures, Micro. Thermophys. Eng., (1997), 1-4, 267-274.
    [Publisher PDF] [DOI: 10.1080/108939597200133 ] [ISI Times Cited: 2]

1990-1996

  1. S. Maruyama* and Y. Yamaguchi, A Molecular Dynamics Simulation for the Formation Mechanism of Fullerene, Therm. Sci. Eng., (1995), 3-3, 105-109. [Cite: http://www.htsj.or.jp/TSE/TSE03.html#03-03]

  2. S. Maruyama*, S. Matsumoto and A. Ogita, Surface Phenomena of Molecular Clusters by Molecular Dynamics Method, Therm. Sci. Eng., (1994), 2-1, 77-84. [Cite: http://www.htsj.or.jp/TSE/TSE02.html#02-01]

1986-1989

  1. T. Kimura and S. Maruyama, Molecular dynamics simulation of water droplet in contact with platinum surface, Proc. 12th Int. Heat Transfer Conf., (2002), 537-542.[WORD(Lab.Only)]

  2. S. G. Kandlikar, S. Maruyama, M. E. Steinke and T. Kimura, Measurement and Molecular Dynamics Simulation of Contact Angle of Water Droplet on a Platinum Surface, HTD (Am. Soc. Mech. Eng.) (Proc. ASME Heat Transfer Division 2001), (2001), 369-1, 343-348.[WORD(Lab.Only)]





Contact: maruyama (at) photon.t.u-tokyo.ac.jp