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Crossover from Ballistic to Diffusive Thermal Transport in Carbon Nanotubes

Takahiro Yamamoto1 ∗, Satoru Konabe2, Junichiro Shiomi3, and Shigeo Maruyama3

1Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo

113-8656, Japan 2Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku,

Tokyo 162-8601, Japan
1Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo

113-8656, Japan

We present a theoretical scheme that seamlessly handles the crossover from fully ballistic to diffusive

thermal transport regimes and apply it to carbon nanotubes. At room temperature, the micrometer-length

nanotubes belong to the intermediate regime in which ballistic and diffusive phonons coexist, and the

thermal conductance exhibits anomalous nonlinear tube-length dependence due to this coexistence. This

result is in excellent agreement with molecular-dynamics simulation results showing the nonlinear thermal

conductance. Additionally, we clarify the mechanism of crossover in terms of characteristic frequency,

which is a new concept derived from the scheme.
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Device heat-generation is a high-priority obstacle to the development of next-generation

electronics. Carbon nanotubes (CNTs) are promising candidates, which may alleviate the

heating problem because of their high thermal conductivity ∼2000 W/m-K.1–5) This high

thermal conductivity originates from a long mean free path of phonons, which is of the order of

µm, even at room temperature.5,6) In this situation, where the mean free path is comparable to

a typical length of CNTs used in devices, thermal-transport is different than in bulk materials,

due to the coexistence of ballistic and diffusive phonons.

One theoretical means of exploring the coexistence phenomena is to use the Keldysh

nonequilibrium Green’s functions,7,8) but it is not well-suited for large-scale calculations.

Therefore, we derive a new formula for quasi-ballistic phonon transport, based on a phe-

nomenological approach introduced first by Büttiker for describing inelastic electronic trans-

port in mesoscopic systems.9) In the quasi-ballistic regime, phonon-phonon scattering plays

an essential role in thermal transport properties, and drives the system toward local thermal

equilibrium, with a spatially varying temperature. To describe such an effect phenomenolog-

ically, we introduce a fictitious probe connected to a heat reservoir with temperature TF , as

illustrated in Fig. 1(a).

The fictitious probe extracts a fraction of phonons travelling inside the conductor, and

reinjects them into the conductor after thermalization in the reservoir, thus acting effectively

as phonon-phonon scattering. In contrast to incoherent phonons propagating from the left to

the right lead via the probe, the remaining coherent phonons propagate from the left to right

lead without entering the fictitious probe. Thus, the thermal current consists of coherent and

incoherent components, icoh(ω) and iinc(ω), as shown in Fig. 1. Note that the net thermal

current flowing in the fictitious probe should be zero:
∫

iF (ω)dω = 0, since the probe is not a

real lead, but merely a conceptual one introduced to express phonon-phonon scattering more

effectively. In other words, the temperature TF at the probe is determined by the condition

that no net thermal current flows in the probe.

By performing some basic arithmetic which follows from the fictitious-probe idea, the

thermal conductance was found to formally have the same expression as the Landauer formula

for coherent phonon transport:10,11)

κ =
∑

ν

∫ ωmax
ν

ωmin
ν

dω

2π
~ω

[
∂f(ω, T )

∂T

]
Tν(ω) (1)

even in the presence of phonon-phonon scattering events. Here, T is an averaged temperature

between hot and cold heat baths, and Tν(ω) is an effective transmission function of a phonon

through a conductor, including the phonon-phonon scattering given by

Tν(ω) = ζLR
ν (ω) +

ζFL
ν (ω)ζFR

ν (ω)
ζLF
ν (ω) + ζFR

ν (ω)
, (2)

where ζαβ
ν (ω) is the transmission function of a coherent phonon with {ν, ω} flowing from α
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to β leads. Note that we neglect the inelastic component of thermal conductance in Eq. (1),

because it gives a negligible contribution to the thermal conductance of CNTs in the quasi-

ballistic regime.

Thus far, we have discussed the role of a single probe with temperature TF . In general,

the temperature inside the conductor varies spatially over a finite range. In order to describe

this spatially varying temperature, we introduce a conductor attaching N probes in series,

with respective temperatures Ti (i = 1, 2, · · · , N). For N probes, the transmission function

T tot
ν (ω) of a phonon with {ν, ω} propagating in a conductor of length L can be written

T tot
ν (ω) =

Lν(ω)
L + Lν(ω)

≈ Λν(ω)
L + Λν(ω)

, (3)

where Lν(ω) ≡ Tν/ρ(1−Tν) is a characteristic length and ρ = N/L is the density of scatterers

in the conductor. The derivation procedure of Eq. (3) is similar to that of effective transmission

for inelastic electronic transport in mesoscopic conductors.12) Here, we explain that Lν(ω) in

Eq. (3) can be regarded as the mean free path Λν(ω) = τν(ω)|vν(ω)|, where τν(ω) and vν(ω) are

the backscattering time and group velocity of a phonon with {ν, ω}, respectively. The distance

between neighboring probes is given by dL ≡ L/N = 1/ρ. For phonon propagation over the

distance dL, the reflection probability Rν(ω) is given by Rν(ω) = (dL/|vν(ω)|)/τν(ω) =

1/ρΛν(ω). Thus, the phonon’s mean free path is Λν(ω) = 1/ρRν(ω), and Lν(ω) ≈ Λν(ω) in

the large-N (or small-dL) limit where the transmission probability of each small segment with

length dL is close to one (Tν(ω) ≈ 1).

As a result, a general expression of thermal conductance is given by

κ =
∑

ν

∫ ωmax
ν

ωmin
ν

dω

2π
~ω

[
∂f(ω, T )

∂T

]
Λν(ω)

L + Λν(ω)
. (4)

For a short conductor obeying L ≪ Λν(ω), Eq. (4) reproduces the Landauer formula10,11)

for coherent phonon transport with perfect transmission. For a long conductor obeying L ≫
Λν(ω), it reduces to the Boltzmann-Peierls formula.13)

We now apply the developed formula (4) to thermal transport in CNTs at room tem-

perature. Although the mean free path Λν(ω) can be calculated using Eq. (2), we use an

phenomenological expression Λν(ω) = cνA/ω2T for three-phonon Umklapp scattering events

in the low-frequency regime obeying ~ω/kBT ≪ 1, where A = 3.35 × 1023 mK/s2 is the cou-

pling constant for graphene14) and cν is a parameter representing the curvature effect of a

CNT (cν = 1 corresponds to a graphene). The use of the phenomenological expression allows

us to perform integration in Eq. (4) analytically. Strictly speaking, the phenomenological ex-

pression is applicable only to acoustic phonon modes with linear dispersion, but it has been

shown to be useful to represent other modes as well.15) Consequently the thermal conductance
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is expressed simply as:

κCNT =
kB

2π

∑
ν

Ων

{
arctan

(
ωmax

ν

Ων

)
− arctan

(
ωmin

ν

Ων

)}
, (5)

where Ων(L) =
√

cνA/TL is a length-dependent characteristic frequency, which is a key quan-

tity for understanding the crossover from ballistic to diffusive phonon transport in the CNTs.

The mode-ν dependence of cν is neglected hereafter, i.e., the mode-dependent characteristic

frequency Ων(L) is replaced by a mode-independent Ω(L). In spite of the relative simplifica-

tion, this works remarkably well to describe the length dependence of thermal conductance in

the quasi-ballistic regime, as we will discuss below.

In Eq. (3), we did not include effects of phonon scattering at interfaces between a CNT

and the left/right leads. One of simple treatments of the interfacial thermal resistance is to

introduce it by the following way: κ−1 = κ−1
CNT + κ−1

int . The interfacial resistance κ−1
int can be

determined by adjustment to fit experimental data or numerical calculation data.

Now, we estimate the thermal conductance of CNTs by performing nonequilibrium

molecular-dynamics (MD) simulations16,17) with Brenner’s bond-order potential,18) and we

compare the MD results to the developed theory. The length-dependence of thermal conduc-

tance was quantified for various tube lengths, up to micrometers at T = 300 K (Thot = 310

K and Tcold = 290 K). We refer the detailed simulation procedure to Ref.17) The calculated

thermal conductances for (3,3) and (5,5) CNTs are shown by blue and red circles in Fig. 2,

respectively. The solid curves represent theoretical curves given the proper choice of two pa-

rameters κint and c (e.g., κ−1
int = 0.09 K/nW and c = 0.65 for the (3,3) CNT). These curves

are in excellent agreement with the MD data. Most recently, the length-dependent thermal

conductance (or conductivity) of CNTs shown here has been measured in experiments,19,20)

although we can not compare the theory with the experiments because the detailed informa-

tion on tube structure (i.e., number of walls and their chiralities) was not described.

Before turning to detailed discussion of the crossover from ballistic to diffusive transport,

it is important to mention that agreement is achieved even without using the long time-scale

thermal-current correlations being considered in present theory. In low-dimensional systems,

the long time tail of heat-flux autocorrelation has been discussed as contributing to the length

dependence and will eventually cause divergence of thermal conductivity.21,22) Note that MD

simulations potentially include this effect through the coupling of thermal noises, although

the onset length for CNTs is not known. Despite this difference between the developed theory

and MD simulations, the two are in excellent agreement. Although this agreement cannot be

taken as rigorous proof, it empirically suggests that three-phonon scattering events make a

major contribution to the length effect in the range of lengths explored by the MD simulations.

This is also in agreement with the NEGF calculation results taking higher-order scattering

corrections into account.8)
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Let us return to discussion of the ballistic-diffusive crossover. The thermal-transport prop-

erties of CNTs are essentially determined by the relative position of Ω(L) with respect to the

phonon dispersion relation. As illustrated in Fig. 3, the dashed blue line indicates the posi-

tion of Ω(L) relative to the dispersion relation. As seen in Fig. 2, nanometer-length CNTs

display length-independent thermal conductance, reflecting purely ballistic phonon transport.

At nanometer length, Ω(L) is much larger than the energies of the phonons, as shown in the

left panel of Fig. 3.

With increasing L, up to micrometer length, the value of Ω(L) decreases, lying in the

middle of the phonon dispersion relation, as shown in the central panel of Fig. 3. In this

situation, low-frequency phonon modes with ωmax
ν ≪ Ω(L) give L-independent thermal con-

ductance reflecting a ballistic nature, whereas the high-frequency modes with ωmin
ν ≫ Ω(L)

show κ ∝ 1/L reflecting a diffusive nature. The intermediate-frequency phonon modes with

ωmin
ν < Ω(L) < ωmax

ν cannot be described in terms of both Landauer and Boltzmann-Peierls

formulae, and exhibit nonlinear L-dependence described by Eq. (5). Thus, we conclude that

micrometer-length CNTs belong to the quasi-ballistic thermal transport regime in which bal-

listic and diffusive phonons coexist.

We next discuss the case when Ω(L) is much lower than the excitation frequency of the

lowest optical phonons, as shown in the right panel of Fig. 3. In this case, the tube length

L reaches millimeters and the contribution of optical phonons to thermal conductance be-

haves as κ ∝ 1/L, resulting in constant thermal conductivity, as λ = (L/S)κ =const. Here,

S is the cross-sectional area of a CNT. Unlike the optical modes, the acoustic modes, with

ωmin
ν = 0, show κ ∝ L−1/2, leading to a power-law divergence λ ∝ L1/2 of thermal conductiv-

ity.15,23) This power-law behavior is closely related to the long-standing problem pointed out

by Pomeranchuk in the 1940s that the low-frequency acoustic phonon contribution to thermal

conductivity diverges in the thermodynamic limit L → ∞.24) However, it is known, in general,

that the divergence disappears if higher-order phonon-phonon scattering events are taken into

account, although the possibility of the above-mentioned long-time tail in low-dimensional

materials remains an open problem.21,22) In either case, the agreement between the current

theory and MD simulation results indicates that the higher-order effects are negligible in the

current length regime. This agrees with the previously reported observation from Boltzmann’s

kinetic approach.15)

In summary, the current work is the first to derive a theoretical scheme that seamlessly

handles the crossover from fully ballistic to diffusive thermal transport regimes. The scheme

also bridges the gap between perturbation approaches and MD simulations, which has been an

obstacle to establishing a universal theoretical foundation for the study of nanoscale thermal

transport. Moreover, the scheme serves as a tool to gain an understanding of the underlying

physics, and opens a new path to exploration of novel thermal devices.
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Fig. 1. (color online). The fictitious probes used to describe the phonon-phonon scattering effect.

The thermal current through the conductor consists of coherent and incoherent components. The net

thermal current through the probe should be zero.

Fig. 2. (color online). Length dependence of thermal conductance. The blue and red circles are MD

data of the room-temperature thermal conductances of (3,3) and (5,5) CNTs, respectively. The blue

and red solid curves represent corresponding theoretical curves (See the text).

Fig. 3. (color online). The relative position of the length-dependent characteristic frequency Ω(L) =√
cA/TL (dashed blue lines) with respect to the phonon dispersions for the (3,3) CNT. Here, a is the

length of a unit cell.
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