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Chapter 1 

Introduction 

1.1 A brief history of graphene 

Graphene is the newest member of this already fascinating family of carbon 

allotropes. The study of carbon allotropes have always been an important issue in the 

fields of experimental physics, material science, and dynamics. Beautiful shinning 

and extremely hard diamonds, dark but smooth graphite (Figs. 1.1a and b), carbon 

allotropes have been well known, utilized, and studied by human for centuries. In 

 

Figure 1.1, Forms of carbon allotropes that share the same honeycomb 

sp
2
-bond structure. a) graphene b) graphite c) carbon nanotube d) buckyball 

fullerene 
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recent years, two newly found carbon materials, namely fullerenes and carbon 

nanotubes (Figs. 1.1c, d), have brought the research of carbon materials to a new era 

of excitement and fantasy. These three are composed by orbital hybridizations of sp2 

bonds, which are called the graphitic materials.  

Fullerenes were discovered in 1985 by Robert F. Curl, Sir Harold W. Kroto, and 

Richard E. Smalley [8], and it was a breakthrough for which they were awarded the 

Nobel prize in chemistry in 1996. The most well known fullerene is the “buckyball”, 

or C60. Due to its spherical symmetry and small size (consisting of 60 atoms), it is 

nearly a zero-dimensional (0D) material, also known as a quantum dot. Another 

great breakthrough is the finding of a 1D carbon allotrope, known as a carbon 

nanotube (CNT), which was discovered in 1993 [9-10]. Before graphene, buckyball 

fullerene and CNTs have already showed the world a spectacular future of extreme 

strength and excellent electronic properties that was supported by sp
2
-bonded carbon 

atoms. So upon the discovery of graphene, which was exfoliated from graphite by K. 

S. Novoselov and A. K. Geim [11], the tremendous attention and enthusiasm 

towards it seemed only fair and natural.  

Graphene shares the same basic structure as buckyball fullerenes and CNTs. It can 

be stacked into 3D graphite, rolled into 1D carbon nanotubes, or wrapped into 0D 

 

Figure 1.2. Electronic band structure of graphene 
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fullerenes [12]. In narrow sense, graphene is only defined as a single 2D hexagonal 

sheet of carbon atoms (Fig. 1.1e), more than one layer should be named as graphite. 

But because double layers and few layers possess similar characters as single-layer 

graphene (SLG), in broad sense, the concept graphene also include double layers and 

few layers, namely bi-layer graphene (BLG) and few-layer or multi-layer graphene 

(MLG). Few-layer graphen have 3 to 10 layers of such 2D graphene sheets. 

Graphene containing more than 10 layers is considered as thick graphene sheet and is 

of little scientific interest. 

1.2 Graphene properties 

Many interesting properties come with the single-atom-thick nature and the 

sp
2
-bonded honeycomb carbon structure of graphene. For example, graphene is 

almost transparent, with the transmittance ratio of about 97% for light with the incite 

wavelength of 550 nm. Half-integer quantum Hall effect at room temperature has 

also been observed in single-layer graphene. [13] 

One of the most interesting properties of graphene is that there is a tiny overlap 

between valence and conductance bands (Figure 1.2), resulting in the metallic 

electrical performance.  

The charge carriers in these structures are more naturally described by the Dirac 

equation rather than the Schrodinger equation, which are known as massless Dirac 

fermions. These quasiparticles can be seen as electrons that lost their rest mass or as 

neutrons that acquired the electron charge. Hence, very strong ambipolar electric 

field effect can be induced by applying gate voltage, such that carrier mobility 

exceed to more than 20,000 cm
2
V

-1
S

-1
 (on Si/SiO2 substrates), which is the highest 

among all materials in ambient conditions. For suspended graphene, the carrier 

mobility exceeds to more than 200,000 cm
2
V

-1
S

-1
 [14], surprising number for any 

semi-conductive material. In 2010, C. Dean and colleagues proved that hexagonal 

boron nitride (h-BN) is a much more suitable high-k dielectric material than silicon 

dioxide for graphene, and reported a carrier mobility of more than 25,000 

cm
2
V

-1
S

-1
 for graphene on h-BN. [15]  

Another important feature is the extreme strength that graphene shows [16]. The 

sp
2
 bonds

 
that connect carbon atoms in graphene are extremely strong, possessing 
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energy of 7.4 eV per atom, much higher that between graphene layers or 

carbon-metal, which is roughly 100 meV per atom. This makes graphene the 

strongest material ever, as demonstrated by C. Lee et al.[17], through the experiment 

in which an atomic force microscope (AFM) probe is utilized to push graphene sheet 

through on a perforated substrate. The break force of graphene is higher than any 

material ever measured, and it is roughly 300 times the strength of steel.   

1.3 Graphene synthesis methods 

Since graphene first isolated by K. S. Novoselov and A. K. Geim in 2004, the 

method they used, mechanical exfoliation by using scotch tape, has been the most 

widely used method even till now, due to its extreme simplicity, which surprised 

most scientists when it was first reported. Typically, Kish graphite or highly oriented 

pyrolytic graphite (HOPE), which is considered as many layers of graphene due to 

their excellent crystalline, is used as raw material. By sticking some graphite on 

scotch tape, and repeatedly folding and opening the tape area with graphite, very thin 

layers of graphene can be produced. Then place the tape on substrates (usually 

Si/SiO2), use a pencil eraser to gently rub the back of scotch tape, and slowly rip the 

tape off. Thus, some thin graphite would be left on the substrate, and by observation 

Table 1.1. Comparison of early graphene synthesis methods  

 

 Advantage Disadvantage 

Micromechanical 

exfoliation 

Simple and extremely 

high-quality 

Small sized and hardly repeatable 

or controllable 

Epitaxial growth 

on SiC 

High-quality Requiring high temperature and 

high vacuum, hard to control layer 

number. 

Reducing 

graphene oxide 

Efficient, simple. Low-quality, lack control of 

morphology 
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using optical microscope, one may find SLG on this substrate.  

Many groups utilize this method because the tools needed are so easy, and the 

resultant SLG is extremely high in quality. The highest carrier mobility of graphene 

with SiO2 substrates derived in this way is more than 20,000 cm
2
V

-1
S

-1
, higher than 

that obtained from any other methods. But the disadvantages of this method are also 

very obvious. The yield of SLG is very low, and even if one can find a piece of SLG, 

the size of it is often less than 100 micron. Although in recent years some effort has 

been made to increase the size of graphene by mechanical exfoliation, such as 

heating the graphite to decrease Van der Waal’s force, ripping off scotch tape from 

substrates in special angle and speed, the sizes of SLG produced in this way are often 

still around tens of microns, even for experienced researchers. High-yield synthesis 

of graphene films was urgently needed. 

Another interesting way to produce graphene is the thermal desorption of Si in 

single-crystal SiC. This method has been known to be able to produce graphite for 

over 40 years [18], [19], but only after 2004, people began to optimize this procedure 

to produce graphene. Typically, using the (0001) facet of single-crystal SiC, after 

surface preparation by H2 etching or oxidation, oxidation is removed by heating the 

samples in very high vacuum with electron bombardment. This 

oxidize-and-deoxidize procedure must be conducted several times to improve the 

surface quality of SiC. After the final remove of oxide, the sample is heated to more 

than 1200 ˚C for several minutes to desorb Si, leaving thin graphene layers [20]. 

There are mainly two drawbacks of this method: the experiment conditions and 

equipment used are difficult to reach; the control over numbers of layers of graphene 

is insufficient. Without a proper solution of these two problems, after some initial 

published works, most groups decided not to follow this method.  

The third method that I would like to mention is the reduction of exfoliated 

graphene oxide (GO) [21-22]. Graphite is first treated with an oxidative procedure to 

reduce the electronic conjugation by methods developed by Brodie, Staudenmeier, 

and Hummers, respectively, then reduced by hydrazine hydrate. In this way, 

graphene small flakes can be produced, but the size and quality of them are not 

eligible for most applications.  

Comparing the three early graphene synthesis methods mentioned above, we can 
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easily find out their advantages and disadvantages, as shown in Table 1.1. It is very 

clear that none of these three early methods are suitable for large-scale application or 

even for many scientific researches. In ideal method should be able to synthesize 

large-size, uniform, flat, low-defect graphene in a simple and low-cost procedure. 

These are the reason that chemical vapor deposition (CVD) of graphene was 

developed and well accepted. 

1.4 Chemical vapor deposition growth of graphene  

The idea of graphene growth on metal surface is very old. One of the earliest 

observations of graphene was in 1965, the low energy electron diffraction pattern 

showed the evidence of graphene on Pt (100) surface [23]. At that time, surface 

scientists were often troubled by the carbon layers on metal surfaces, so before they 

took a deep look into this material, they developed a method to remove it [24]. So 

after SLG was identified in 2004, it became very straight forward to turn back to 

CVD as a method for graphene synthesis. The basic idea is: decomposition of carbon 

source in high temperature provides carbon which is adsorbed on metal surface, and 

the carbon adatoms form graphene structure epitaxially on metal surfaces (although 

later evidences prove that graphene growth on Cu is not really epitaxial). In the first 

graphene CVD paper, Alpha T. N’Diaye and collaborators showed that by deposition 

of the decomposition product of ethylene on the (111) face of single-crystal Ir, 

graphene single-crystals can be synthesized [25].  

Later, more transition metals are reported to be suitable for graphene-growth 

substrates [26-29]. Among them, Ni and Cu [30], became popular for graphene 

synthesis substrates. In 2009, R. Alonso, J. Kong and collaborators provided a proto 

procedure for graphene growth on Ni substrate using methane as carbon source [31]. 

In this paper, they transfer the graphene with wet etching of metal substrates using 

PMMA as mediator, and this method became a standard transfer technique. But in 

their work, the yield of real SLG was considerably low. Soon afterwards, K. S. Kim 

and collaborators published a much better result from a similar procedure, with 

carrier mobility of 3700 cm
2
V

-1
S

-1
 [32], which made graphene growth on Ni popular 

for a while. 

Parallel to this work, X. Li and R. Ruoff conducted and published their work in 
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which Cu foils were utilized as substrates for CVD growth of graphene on Cu [33]. 

They showed that with Cu substrates, the resulting graphene was very 

homogeneously single layer.    

1.5 Objective of this thesis 

Despite all the excellent work done by former studies, there are still remaining 

challenges: 

First, the control on number of layers was not sufficient. For graphene growth 

on Ni, SLG, BLG and FLG were often found on the same sample. Even for Cu 

substrate, which was generally considered in favor of homogeneous graphene, still 

some bi-layer region could be observed.  

Second, the defect level was still higher than that of mechanically exfoliated 

ones. For mechanical exfoliated graphene, the carrier mobility on SiO2 was over 

20,000 cm
2
V

-1
S

-1
, but in CVD derived graphene, carrier mobility was no more than 

5,000 cm
2
V

-1
S

-1
. There was often some D-band in the Raman spectroscopy for 

CVD derived graphene, while for mechanical exfoliation, the D-band in graphene 

was always zero. 

Third, the mechanism behind this growth procedure was still not clear. In 

previous works, researches roughly summarized the growth mechanism for both Ni 

and Cu substrate. In the case of Ni, it was believed that a dissolving and 

precipitating procedure dominated the growth of graphene, due to high solubility of 

C in Ni [34]. As for Cu, the growth was a strict surface procedure, due to the low 

solubility of carbon in Cu. But the detailed mechanism was not sufficiently 

discussed, such as the catalytic role of Cu and Ni, how the nucleation formed, the 

expansion rate of graphene flakes during growth, and how the carbon atoms 

attacked on the edges of graphene flakes, etc.  

Before I started this research, almost all the successful studies in this field were 

conducted using methane as carbon source, for its simplicity in CVD reaction. 

Some other carbon sources are reported, such as ethane [35], ethanol [36-37] or 

even solid materials[38-39] but their results are far from good enough to compare 

with that of methane. Considering the history of our lab, in which we demonstrated 

that due to the extra O atom in each ethanol molecule, very clean and single-walled 
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carbon nanotubes can be grown [40-41] we hope that this advantage would allow 

us to grow very clean and single-layer graphene, and the more complex 

decomposition products of ethanol would let understand the mechanism. Ultimately, 

we hope that we can grow large, low-defect, single-crystal graphene from ethanol. 

1.6 Organization of this thesis 

After a brief introduction on the structure, properties, and former synthesis 

methods of graphene, the ACCVD method, which is the main experiment 

procedure in this work, is introduce in Chapter 2. The characterization methods, 

especially Raman spectroscopy, is also explained and summarized in detail. In 

chapter 2, some of our initial work about graphene growth on Ni substrates is also 

reported. 

Chapter 3 and Chapter 4 are the main contents of this thesis, in which I would 

explain in detail about how we manage to gradually improve the quality of 

graphene growth on Cu using ethanol precursor. Many problems with the quality of 

graphene are resolved by the optimization of CVD processes. Finally, high-quality 

large single-crystal graphene is synthesized by alcohol CVD method. The influence 

of each CVD factor is systematically studied and the quality of graphene films are 

confirmed through different characterization methods. A mechanism model 

emphasizing the role of surface oxygen is proposed. Moreover, we fabricated and 

tested the graphene/n-Si solar cells, and demonstrated the extraordinary 

performance brought by the improvement in graphene growth.   

   



 

Chapter 2 

Synthesis and characterization methods 

2.1 Raman spectroscopy of graphene 

Several basic characterization methods for graphene were developed before the 

proposal of its CVD synthesis. For example, graphene films with different layer 

numbers show obvious contrasts under microscopy when they are transferred onto 

Si wafer with the right thickness of oxide layers (such as 300 nm). Atomic force 

microscopy (AFM) was also used to judge the existence of graphene based on its 

uniform height. But these methods are circumstantial and unreliable, providing no 

information on the quality of atomic level. Soon after, Raman spectroscopy became 

a major method for the characterization of graphene, for its detailed and direct 

information on the local chemical structure of materials.    

Raman spectroscopy has historically played an important part in the structural 

 

Figure 2.1 Raman processes of a) Stokes scattering and b) anti-Stokes scattering 
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characterization of graphitic materials, especially carbon nanotubes (CNTs), for its 

thorough information about the charality, defect level, diameters, etc. Since 

graphene share the same basic structure as CNTs, the characterization method 

should be similar. 

The principle of resonance Raman spectroscopy is the inelastic scattering of 

photon, which is phenomenon of change of frequency when light is scattered by 

molecules. When a light wave reaches a solid material or a molecule, most photons 

are elastically scattered, which means there is almost no energy difference between 

incident and scattered light, and this process is called Rayleigh scattering. However, 

there is a small fraction of light (approximately 1 in 10
7 

photons) that is inelastically 

scattered, with a different frequency from the incident photons, which is called 

Raman scattering. If the energy level of the molecule is already above its lowest 

energy, then an encounter with a photon would make it obtain a transition to a lower 

energy, thus the photon is scattered with an increased frequency. Hence, we can 

conclude that the Raman shifts have such characteristic that they are equivalent to 

the energy changes involved to transitions of the scattering species, although Raman 

shifts are caused by rotational transitions of the scattering molecules, rather than 

 

Figure 2.2. Spectrum of photon transition from elemental ground level to virtual 

states.  
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absorbed the photon perturbs the molecule and induces this phenomenon. In 

resonant Raman scattering, three processes occur as shown in Figure 2.1. Firstly, 

after absorbing a photon, an electron is excited from the valence energy band to the 

conduction energy band. Then the excited electron is scattered by emitting or 

absorbing phonons. In the end the electron relaxes to the valence band by emitting a 

photon. During the above procedure, if the scattered photon has lower frequency 

than incident photon, which means losing energy to phonons, then the phenomenon 

is called Stokes Raman scattering. Otherwise, if the scattered photon has higher 

frequency (gaining energy from phonons), it is called anti-Stokes Raman scattering. 

We can obtain a Raman spectrum by plotting the intensity of scattered light as a 

function of energy difference marked as “Raman shift” (in unit cm
-1

), as shown in 

Fig. 2.2. In Raman spectroscopy, the Stokes and anti-Stokes scattering signals are 

symmetric, and the Rayleigh scattering is displayed centrally (Raman shift = 0). 

This is because they all indicate the same phonon energy of the material. Raman 

 

Figure 2.3. Raman spectra of single-layer, double-layer and few-layer graphene 
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intensity is proportional to the number of phonons, which can be described by 

Boltzmann distribution, therefore we obtain more intense signals in Stokes Raman 

scattering and usually only plot them in Raman spectra. Raman spectra reveal 

phonon explicitly, being independent of the electronic structure of materials and 

excitation laser energy, and in weak intensity. However, the scattering efficiency is 

largely enhanced when incident phonon matches the energy separation between two 

electronic states, and this process is called resonance Raman spectroscopy (RRS). 

This technique has become widely used to improve the S/N (signal-to-noise ratio) in 

Raman spectra. 

The main features in the Raman spectra of carbon materials are the so-called G 

and D peaks, which lie at around 1580 and 1360 cm
−1

 respectively for blue light (488 

nm) excitation. For graphene, a special third peak called the G’ peak is also very 

important. Since it is located at ~2700 cm
−1

, nearly twice the Raman shift of the D 

peak, this G’ peak is also referred as the 2D peak. The G band is caused by the E2g 

vibrational mode, and the 2D band is a second-order two-phonon mode. The third 

feature, the D band at ~1360 cm−1, is not Raman active for pristine graphene but can 

be observed where symmetry is broken by edges or in samples with a high density of 

defects. It is the changes in the positions and the relative peak heights of the G and 

2D bands that serve to indicate the number of layers for a given flake. The location of 

the G peak for single-layer graphene is 3-5 cm
−1

 higher than that for bulk graphite, 

while its intensity is roughly the same (In Figure 2.3, the curves are normalized with 

2D peaks for the convenience in comparison ).[42] 

 

 

Figure 2.4. 2D bands of a) single-layer graphene, b) bi-layer graphene. 
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The 2D peak in graphene is due to two phonons with opposite momentum in the 

highest optical branch near the K point of the Brillouin zone. It can be split into four 

components, and each represents one possible choice of phonon scatter, due to the 

splitting in both valence band and conductance band. For single-layer graphene, 

there is no splitting in either the conductance band or the valence band, thus the 2D 

peak exhibits a strong and symmetric Loranzian (Figure 2.4 a). The intensity of 2D 

band of single-layer graphene is almost twice the intensity of G band, thus this is a 

convenient signature for the detection of single-layer graphene. The 2D peak shows 

a significant change in both shape and intensity as the number of layers is increased. 

For double-layer graphene, the 2D band is a combination of 4 individual components 

with different Raman shifts, so the intensity of 2D-band is decreased, and its width 

enlarged, with a unsymmetrical shape (Figure 2.4 b). Its intensity is almost the same 

as G band. For graphene with 3 layers or more, the 2D band consists of more 

components, its intensity becomes lower, and the shape is more complex.(Figure 

2.3) [43-44] 

The 2D band for bi-layer graphene discussed above is only referring to 

 

 

Figure 2.5. a) Raman spectra and b) 2D bands of twisted bi-layer graphene and 

single-layer graphene. 
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AB-staking BLG. For there is a chance that the orientations of two layers of 

graphene are normal to each other, and the stacking order is not AB Bernal-stacking. 

We refer to this kind of bi-layer graphene as twisted BLG. For twisted BLG, the 

valence and conductance bands are not split, so the 2D band is also strong and 

symmetric just like the 2D band of SLG (Figure 2.5 a), so the general Raman 

spectra for twisted BLG and SLG are very alike. But if observed more closely, 

there is a little shift (~9 cm
-1

) between the 2D band of twisted BLG and that of 

SLG (Figure 2.5 b). This little shift allows us to confirm the number of layers 

accurately. These results about twisted bi-layer grphene are mainly discussed by A. 

MacDonald and colleagues [45], and Z. Ni and colleagues [46].    

Due to these very special wave-shape characteristics of the Raman spectra of 

single-layer, bi-layer and multi-layer graphene, Raman spectroscopy becomes a very 

easy and accurate way not only to decide their layer numbers but also their qualities. 

More specific studies regarding the features for twisted bi-layer graphene with 

different twist angles, graphene edges, graphene with chemical doping, graphene 

under mechanical strain, are also conducted, providing us with thorough 

information for graphene characteristics [47-57]. In this thesis, unless mentioned 

otherwise, all Raman spectroscopy is conducted using a incite laser wavelength of 

488 nm.   

2.2 Alcohol CVD method 

The synthesis of graphene on metal substrates is progressing quickly, but many 

challenges are still remaining. Many reported works have proved that CVD 

procedure is effective in synthesizing graphene from a variety of hydrocarbons such 

as methane, ethylene, acetylene and benzene, but the quality of the resultant 

graphene is in doubt. Besides, the mechanism of this CVD growth is not completely 

understood. So far, most of the works on graphene large single crystals have been 

conducted using methane as carbon source, following the initial successful trial 

reported by the Ruoff group in 2009 [33]. For its structural simplicity, methane is 

suitable for the on-going study about nucleation and graphene-edge attachment of C 

atoms. But some other hydrocarbons with more complex structures may prove to be 

more suitable for the growth of single-crystal graphene in future industrial 
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manufacture (such as lower temperature). Our group has shown that very clean and 

single-walled CNTs can be synthesized from ethanol, which is considered a benefit 

from its decomposition products [40-41]. Here I employ alcohol as carbon source, 

not only to take beneficial trial to see if all the excellent advantages in synthesizing 

CNTs still apply in producing graphene but also to learn the mechanism of CVD 

growth in a subtly different point of view.  

The schematic of an ACCVD system in our lab is shown in Fig. 2.6. This 

system can provide a minimum pressure of 15 Pa and a maximum temperature of 

1200 ˚C. Liquid ethanol is contained in a stainless-steel tank. The reaction chamber 

is a quartz tube, and we can load the sample in it through each end of the tube. The 

tube is surrounded by an electrical furnace to create a designed temperature for 

CVD reaction. During a CVD procedure, the ethanol vapor diluted by Ar/H2 is 

pumped in to the quartz tube, ethanol would decompose into many products to 

provide carbon, and these carbon species would be adsorbed on the substrate to 

form carbon nanotubes or graphene, depending on the substrates and reaction 

conditions.  

 

Figure 2.6. Schematic of ACCVD system for graphene growth. Note that mass 

flow of ethanol vapor is controlled with a mass flow controller, rather than a 

bubbling system. 
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2.3 Graphene synthesis on Ni using ethanol precursor 

2.3.1 Background 

It has been known for decades that CVD of hydrocarbons on reactive Ni or 

transition-metal-carbide surfaces can produce thin graphitic layers. The mechanism 

has been discussed since then, and a most accepted model is summarized as follows:  

hydrocarbons would be decomposed in a high-temperature environment, to provide 

carbon atoms, and these carbon atoms isolated would dissolve into bulk Ni. Then as 

temperature decreases, carbon atoms would precipitate out of the surface of Ni foil 

to form a graphite-like layer.
 
This procedure is shown by Figure 2.7. So the key point 

on produce graphene on Ni foils should be reducing the massive carbon atom 

quantity dissolved in Ni surface. To achieve that, flow rate of carbon source should 

be low, and the pressure should be very low; besides, some groups claimed that very 

thin metal film would contribute in the same way.  

Our work about graphene growth on Ni is mainly inspired by K. Kim et al [32] 

and A. Reina et al. [31]. They reported the growth of wafer-scale graphene films on 

Ni substrates using methane as carbon source. The carrier mobility in their 

graphene is more than 3,700 cm
2
V

-1
S

-1
, which is very high considering all the other 

graphene synthesis works at that time, but there is still room for improvement. 

They show that their graphene films is not homogeneous, consisting of single-layer, 

 

Figure 2.7.Schematic of graphene growth mechanism on Ni substrates 
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bi-layer and multi-layer graphene, which seems to be unavoidable considering the 

dissolution-and-segregation growth mechanism. We would very much like to see if 

ethanol can prove to be a better carbon source in realizing homogeneous 

single-layer graphene. 

Parallel to our research, Miyata et al. published the first work using ethanol as 

carbon source on Ni substrate.[37] But their work is more of an initial trial, the 

resulting graphene in very inhomogeneous, with a very large D-band intensity 

indicating very strong defect level. They specifically emphasizing on the 

importance of fast cooling process at the end of a CVD procedure to successfully 

synthesize graphene, corresponding to the dissolution-segregation-precipitation 

mechanism.  

2.3.2 Experiment procedure and characterization 

Based on previous work, we explore our own growth procedure. Both 

commercial Ni foils (The Nilaco Corporation) with different thickness and 

deposited Ni film on Si/SiO2 substrates are employed as substrates for graphene 

growth. The typical CVD processes are shown in Figure 2.8. In order to lower the 

numbers of layers, after many trials, major improvement has been made at the 

aspects of smaller vapor flow of ethanol and shorter CVD durations. Other CVD 

parameters, such as the reaction temperature, pressure, etc., are optimized as well. 

The typical procedure of synthesis is as follows: 

The sample is loaded into the quartz tube, and is heated to 900°C, with a 

reduction gas flow of 300 sccm H2/Ar during the heating. Because the carbon source 

needed is very little, we flow alcohol at a rate of 50 sccm for merely 2 s. Then a 

 

 

Figure 2.8. Schematic of graphene growth procedure on Ni substrates using 

ethanol as carbon source 
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cooling down procedure with normal cooling rate (about 10 °C per second) is 

applied.  

Raman spectroscopy helped to detect the existence of graphene (Figure 2.9). To 

set a reference for the Raman features of graphene with different layer numbers, 

mechanical exfoliation was employed to produce graphene with the best quality, 

and their Raman spectra is shown in Figure 2.10. For their obvious contrast under 

microscopy, their layer numbers are accurately distinguished, and the Raman 

spectra from them can be used to identify all the graphene films from CVD method. 

Note that in Figure 2.9, the Raman spectrum of double-layer graphene and 

single-layer graphene taken directly on Ni substrates have quite similar profiles, 

unlike the Raman spectrum taken on Si/SiO2 substrates after transferred (Figure 

2.10). In order to get the homogeneity of graphene films directly on Ni substrates 

we have to scrutinize the wave shape of the 2D peaks to confirm whether the 

synthesized graphene is single-layer or double-layer. By using the same data used to 

 

Figure 2.9. (a) Raman spectra of single-layer, double-layer and multi-layer 

graphene taken directly on Ni substrates. (b) optical image of graphene on Ni 

substrates 
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plot Figure 2.9, I fitted the 2D peaks with Lorentzians. The 2D peak of single-layer 

graphene is perfectly symmetric and can be fitted by a single Lorentzian with a 

full-width at half-maximum (FWHM) of ~25 cm
-1

; the 2D peak of double-layer 

graphene can be exactly fitted by four Lorentzians, each with a FWHM of ~25 cm
-1

. 

The optical image in Figure 2.9 is not very clear because of a little curvature of the 

Ni film. Also, Figure 2.9-b clearly shows that the graphene film on Ni substrates is 

very inhomogeneous, and the same speculation is confirmed by Raman 

spectroscopy, as shown in Figure 2.9-a. Single layers, double layers, few layers 

coexist on Ni substrate.  

Optical photos and SEM images of graphene growth on Ni substrates are taken. 

Before CVD, the pristine Ni foil shows bright, shining, metal color, as shown in 

Figure 2.11-a. After CVD growth, the Ni foil looks rougher, and a little darker 

(Figure 2.11-b). SEM images show that graphene cover the whole surface of the Ni 

foil. Some spots, contaminations and other kinds of imperfection can be observed 

 

Figure 2.10. (a) Raman spectra of single-layer, double-layer and multi-layer 

graphene after transfer onto Si/SiO2 substrates. (b) Optical image of graphene on 

Si/SiO2 substrates. 
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on the graphene surface (Figure 2.11-c). Higher magnification reveals that there are 

many wrinkles in the graphene film, which may caused by the thermal expansion 

of the underlying Ni.   

More specific Raman characterization was conducted after graphene film was 

transferred to Si/SiO2 substrates. As explained in 2.1, the intensity ration of G 

peak/D peak reflects the defect level of the graphene film, and the very weak D 

peak in our result (Figure 2.12) suggests that our single-layer graphene has few 

defects (G/D ratio is ~ 10), while a later published result could not achieve results as 

desirable as ours.[37] 

 

Figure 2.12. A typical Raman spectrum of our graphene film showing the area 

of D band and G band. The G/D ratio is about 10 for many measured sites. 

 

Figure 2.11. Photograph of the Nickel foil (a) before and (b) after undergoing CVD 

reaction along with SEM images (c and d) of graphene on Ni substrate. 
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To further demonstrate the quality of our graphene film, we employ scanning 

Raman spectroscopy. We scan an area of 15 μm × 15 μm, after we transfer the 

graphene film onto Si/SiO2 substrate. The map of 2D to G ratio and the 2D width 

are drawn in Figure 2.13-a, b. Here we roughly decide that if the 2D to G ratio is 

higher than 1.5, and the 2D width is smaller than 35 cm
-1

, then we believe this area 

is singe-layer. By this principle, we count in Figure 2.13 a and b, and come to the 

conclusion that 31% of the area that we scan with Raman spectroscopy is 

single-layer graphene, 41% is bi-layer graphene, and the rest 28% is few-layer 

graphene. The ratio of SLG and BLG we acquired is among the best ever results on 

Ni substrates so far. 

 

Figure 2.13. Scanning Raman spectra of graphene sample transferred to Si/SiO2 

substrates. a) 2D to G intensity ration map. b) 2D width map. c) 2D peak position 

map. d) the ratio of different layer numbers. 
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But on a closer observation, we find ourselves too optimistic. As discussed in 

2.1, the 2D band of twisted bi-layer graphene exhibits the same characteristic as 

single-layer graphene. So the 31% single layer that we decided upon observation of 

2D to G intensity ration and the width of 2D is inaccurate. So we draw another 

Raman map based on the position of 2D, as shown in Figure 2.13 c. Now with the 

blue-shift of nearly 10 cm
-1

 of twisted bi-layer graphene from single-layer graphene, 

we are able to distinguish them. We find that among the 31% area, there is actually 

80% twisted bi-layer graphene, and only 20% is the real single-layer (Figure 2.13 

d). This suggests that the majority of our graphene film synthesized on Ni films is 

double-layer graphene. Both commercial Ni foils and deposited Ni films are 

applied as substrates, and they exhibit no obvious difference.  

We also studied the influence of CVD temperatures on the synthesized graphene. 

We selected 5 points randomly on 5 samples synthesized at different temperatures 

and mapped out the relationship between 2D/G ratio and temperature. 2D/G ratio is 

used as an approximate parameter to determine the amount of graphene layers at 

each point. Because this Raman spectrum is directly taken from Ni substrates, 

single-layer graphene could be confirmed only when 2D/G ratio is around 5. If 2D/G 

 

Figure 2.14. The study of homogeneity with different growth temperatures. At 

each temperature, we selected five random locations, for Raman observation, and 

plot the 2D to G ratios.   
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ratio is between 2 to 4, the laser spot may cover the boundary of double-layer 

graphene and triple layer graphene. On the when the 2D/G ratio is close to 2, the 

synthesized graphene is double-layer. From Figure 2.14, we see that only when the 

CVD temperature is around 900°C, single-layer graphene could be synthesized, but 

the graphene film is very inhomogeneous. Since we are not able to synthesize a 

majority of single-layer graphene, homogeneity of a double layer may also be 

important. When CVD temperature is 950 ˚C, the dispersion of 2D/G ratio is 

narrow and close to 2, suggesting the graphene film under this temperature is 

relatively uniform double-layer, and its optical image is shown in the inset of 

Figure 2.14. On the other hand, when temperature is lower than 875 ˚C, a majority 

of multi-layer graphene is observed.    

Conventional view believes that there are two key points to synthesize SLG on 

Ni substrates: the very low thickness of Ni (less than or equal to 300 nm) foils and 

the fast cooling rate (around 10°C per second) after CVD reaction. So we also tried 

to grow graphene on 300 nm deposited Ni foils and apply a slow cooling rate (less 

than or equal to 1°C per second) after CVD reaction. The synthesized graphene 

samples have no much difference from the result obtain under previous proposed 

conditions.  

2.3.3 Study of growth mechanism by carbon isotope labeling 

Since we proved that the fast cooling rate may not be necessary for graphene 

growth on Ni using ethanol as the carbon source, we believe the mechanism of this 

growth may be other than the conventional dissolution-segregation-precipitation. 

Some other researchers also reported that with optimized conditions, uniform 

single-layer graphene can be formed by local saturation of carbon species on Ni 

surfaces, and Ni only act as a mediating carbon sink [58]. This is consistent with 

our results, for the fact that in our experiments, bulk Ni foils (20 µm thick) and 

deposited Ni thin films (300 nm thick) exhibit no much difference as substrates.  
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In order to study the mechanism, we did four experiments using carbon isotope 

labeling. Because 
13

C ethanol is very expensive, a no-flow procedure for graphene 

growth is developed. This procedure is almost the same as the proposed one except 

that after heating the sample to 900°C, instead of flowing alcohol at a constant rate, 

we add in a preset amount of alcohol into the sealed tube at one time. After keeping 

the CVD reaction running for ten minutes in a closed environment we then cool 

 

Figure 2.15. Schemes of isotope-labeling experiment processes  
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down the tube. This process makes it possible for us to precisely control the amount 

of carbon source or the ratio of different carbon sources. In this case, we involve 

three kinds of ethanol, 
12

C, 
13

C and 2-
13

C. The procedures of these three experiments 

are shown as below.  

Experiment a:  

Firstly we provide an amount of 2μL 
12

C ethanol to react with the Ni foil, then 

we cool the tube down to ambient temperature, so that graphene synthesized from 

12
C ethanol could be formed. In the second step, we heat the tube to 900°C again and 

add in 2μL 
13

C ethanol to react with the sample, then cool down to ambient 

temperature. 

Experiment b:  

Experiment b is almost same as the experiment a, except that there is no cooling 

down process between the two steps. After the reaction with 
12

C ethanol, we directly 

add in 
13

C ethanol without cooling down.  

Experiment c: 

In a no-flow CVD procedure, we use a mixture of 50% 
12

C ethanol and 50% 
13

C 

ethanol to react with the Ni foils. Then cool down to ambient temperature to form 

graphene. 

Experiment d: 

In a no-flow CVD procedure, we use 2-
13

C ethanol to react with the Ni foils. 

Then cool down to ambient temperature to form graphene. 

The schemes of these four experiments are shown in Figure 2.13. Besides these 

four experiments we also grew graphene using 
12

C ethanol and 
13

C ethanol 

separately. By comparing the Raman spectrum of graphene films produced by these 

four experiments, some interesting ideas can be drawn about the mechanism of CVD 

process on Ni.  

Raman spectra of experiment c and d along with 
12

C graphene and 
13

C graphene 

are shown together in Figure 2.15. The frequencies of Raman modes are given by (1) 

with the assumption that the 
12

C or 
13

C atoms are randomly mixed and the bond force 

constants are equal.  
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                                                 (1) 

 

Where ω12 is the Raman mode frequency of 
12

C graphene/ graphite, n12 and n13 

are the atomic fractions, and m12 and m13 are the atomic masses of 
12

C and 
13

C, 

respectively. This equation is definitely applicable to the result of the experiment c. 

We use the center of FWHM of the G band (1585 cm
-1

) and 2D band (2686 cm
-1

) of 

12
C graphene as standard, and compute the theoretical results of 50% 

12
C graphene 

and 
13

C graphene. Comparisons of these theoretical and experimental results are 

shown in Table 2.1, and there is not much difference between them. 

 

Table  2.1:  

 

 50% 
12

C  

G band 

50% 
12

C  

2D band 

13
C G band 

13
C 2D band 

Theoretical  1558 cm
-1

 2657 cm
-1

 1522 cm
-1

 2591 cm
-1

 

Experimental 1558 cm
-1

 2660 cm
-1

 1520 cm
-1

 2590 cm
-1

 

 

In Fig. 3.11 we can see that the peak position of 2-
13

C graphene is much closer to 

13
C graphene than 50% 

12
C graphene and 

13
C graphene. This is because that the bond 

between C atoms in ethanol is weaker than the bond between C atom and O atom, so 

in experiment d, during the decomposing process more 
13

C atoms than 
12

C atoms are 

decomposed. Hence the synthesized graphene consists of more 
13

C atoms.  

Raman spectra of the first three experiments are shown in Fig. 2.16. Both results 

of experiment a and b are almost the same as experiment c, indicating that all 

produced graphene consist of equally and uniformly dispersed 
12

C and 
13

C atoms.  

In experiment a, 
12

C graphene was firstly synthesized before the adding of 
13

C 

ethanol, but still the consequential graphene consists of equally and uniformly 

dispersed 
12

C and 
13

C atoms. This can only be explained that the strong sp
2
 bonds are 

broken and 
12

C graphene is decomposed at 900°C on Ni foil, and releases 
12

C atoms 

which are dissolved into Ni foil mixed sufficiently and uniformly with 
13

C atoms. 

Later they precipitate together during the second cooling down process to form a 

12
12

12 12 13 13

m

n m n m
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50% 
12

C graphene film. 

In experiment b, 
12

C atoms have completely dissolved into Ni foil before 
13

C 

atoms access into the tube. But later they can still precipitate to form a uniformly 

dispersed 50% 
12

C graphene film, suggesting that C atoms can be mixed with each 

other inside the Ni foil regardless the order of their entrances. All that C atoms can 

move relatively freely in Ni film. These results are consistent with the work of Li 

Xuesong et al. 

By sequentially inducing 
12

C and 
13

C ethanol, if the graphene growth follow 

the conventional principle, i. e., the dissolution/segregation process, we should 

expect that the 
12

C and 
13

C form together during the cooling down process, which 

would result in randomly dispersed 
12

C
 
and 

13
C atoms. Thus, the Raman spectrum 

of this mixed C isotope graphene should be a combination of 
12

C
 
and 

13
C graphene, 

i. e., there should be a solo G band, with a position in between the pure 

12
C-graphene G band and 

13
C-graphene G band.  

 

Figure 2.16. Raman spectra of graphene from carbon isotopes  
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Instead, we always observe the existence of separated 
12

C-graphene G band 

and 
13

C-graphene G band, as shown in Figure 2.17. For our Raman spectroscopy 

equipment, the size of the laser spot is around 1 µm
2
, and it is very big compared 

with graphene lattice, but very small compared with the graphene film. So in 

Figure 2.17, the laser spot sometimes covers pure 
12

C graphene, sometimes it 

covers both 
12

C and 
13

C
 
graphene, and sometimes covers multi-layer graphene, but 

seldom does it cover graphene layer that consists of randomly mixed 
12

C and 
13

C
 

atoms or only pure 
13

C atoms, as shown in Figure 2.17. Almost all the areas that 

exhibit 
13

C signals also show the existence of 
12

C. From the Raman map 

 

Figure 2.17. Typical Raman spectra for isotopic graphene samples. Spectra of 

single-layer graphene are shown on the right side, and spectra of few-layer 

graphene are shown on the left.  
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observation, we summarize two phenomena: firstly, 
13

C graphene always coexist 

with 
12

C graphene, while 
12

C
 
graphene can exist alone on the film; secondly, 

12
C 

graphene and 
13

C graphene are always separated, the two types of atoms are 

seldom evenly mixed.  

The second point summarized above proved that the conventional 

dissolution/segregation process is not applicable for our graphene growth, since 

during the dissolution process, C atoms, regardless of induced order, must travel 

with high freedom and mix inside the Ni foils, thus it would without doubt result in 

a predominant evenly mixed isotopic graphene film. So we suspect that our growth 

mechanism is a surface procedure.  

The first phenomenon proved our suspicion. The fact the growth of 
13

C 

 

Figure 2.18. Typical Raman spectra for isotopic graphene samples. Spectra of 

single-layer graphene are shown on the right side, and spectra of few-layer 

graphene are shown on the left.  
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graphene always follows the growth site of 
12

C graphene, suggests that there 

growth preference sites on Ni foil, which are obviously the imperfections on Ni 

surface such as step edges. In these experiments, firstly induced 
12

C
 
species start 

the growth on Ni foils, secondly induce 
13

C species continue to grow on the growth 

preference sites occupied by 
12

C graphene, and this procedure strongly suggests a 

surface procedure.   

On the basis of the above results and discussion, we propose a non-segregation 

growth model to interpret the graphene formation on Ni surface from ethanol at high 

temperature. In this process, decomposition products of ethanol are partially 

catalyzed by Ni and form small carbon fragments on the surface. Due to the rapid 

surface saturation of Ni by the reactive carbon or buffering effects from the 

oxygen-containing decomposition products [59-60], instead of being dissolved into 

the bulk Ni, these small carbon fragments nucleate into graphene the growth. The 

nucleated carbon chains or hexagonal lattices rapidly expand to form SLG flakes. 

This rapid expansion of SLG forms a thermally stable equilibrium with the Ni 

system at high temperature, analogous to the “segregation” state of the Ni-C system. 

Graphene flakes formed on step edges quickly expand until a full cover of graphene 

layers are completed on the Ni surface. Extended growth time results in the 

formation of additional graphene layers when the carbon flux goes through the 

formed layers and in contact with the Ni surface. [61-62]  

Note that our results don’t necessarily contradict to the 

dissolution-segregation-precipitation model, since the mechanism could be very 

different for different carbon sources. For methane, which is the most commonly 

used precursor for graphene growth, the size of its molecules is small, and the 

dissociation energy is high, thus it is easier to be dissolved in Ni and less likely to 

react on the surface on Ni when energy is not sufficiently high (such as in 

low-temperature cases); and for some other non-hydrocarbon precursors, such as 

ethanol, benzene and acetylene[58, 63], the dissociation energy is low, combining 

with low reaction temperature, demonstrating a majority of surface-mediated 

reaction, resulting in a more uniform graphene film.   
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2.4 Summary 

In this chapter, the basic structure and work function of ACCVD system is 

introduced. More importantly, the most powerful tool for graphene characterization, 

Raman spectroscopy, is introduced. And all the Raman characteristics for graphene 

are summarized and discussed, providing detailed information on the quality of 

CVD graphene film. 

Moreover, with optimized CVD conditions, we proved ethanol as a 

replacement carbon source is equally capable in the synthesis of graphene. The 

resultant graphene films are mainly double layers, and 41% among them are 

AB-stacked, as confirmed by scanning Raman. The mechanism behind the CVD 

growth is explored via carbon-isotope labeling. With sequentially induced 
12

C and 

13
C ethanol vapor, the atoms of these two isotopes are not mixed, so we propose a 

surface adsorption model to explain the growth mechanism  

 

 

  



 

Chapter 3 

ACCVD synthesis of graphene on Cu 

3.1 Background 

Parallel to the works on Ni, many other groups tried to grow graphene on Cu 

substrates. The most successful results were published by the Ruoff group from UT 

at Austin, which they demonstrated that homogeneous single-layer graphene can be 

grown on Cu foils. Later, they showed that the growth behavior, i.e., the evolution, 

the nucleation density, and the shapes of graphene flakes can be controlled by 

tuning CVD conditions. [64] 

  The major difference between these two transition metals is the solubility of C. 

In Ni, at typical CVD reaction temperature (900 ˚C), the solubility of C is ~0.9 at.% 

[65-66], thus a major dissolution of C atoms in the bulk Ni is entirely possible; 

while in Cu the C solubility is only ~4.8 at.ppm at 1000 ˚C [67], almost 2000 times 

lower than in Ni, thus a majority of C species would remain on the Cu surface, and 

the CVD reaction is refrained on the surface, which leads to a good control of 

number of layers. Many other transition metals may also be suitable for graphene 

growth, but Cu and Ni are obviously the low-cost choices, which is very important 

for both many repeating experiments and future industrial manufacture.  

3.2 Single-layer graphene from ethanol on Cu 

3.2.1 Growth procedure 

Commercially available Cu foils (10-µm-thick, Nippon Denkai) were adopted as 

substrates. Thermally evaporated ethanol vapor was utilized as carbon source. The 

growth procedure (Figure 3.1) began with the cleaning of the substrate. Cu foils 

were washed with HCl solution, acetone and 2-proponal for 10 minutes each. Then 
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the Cu foils were placed into a quartz tube, and heated to 1000°C. We annealed the 

Cu foils for 40 minutes to increase the grain sizes and obtain a smooth surface. A 300 

sccm flow of 3% H2 diluted in Ar was used throughout the heating and annealing 

processes. After annealing, we cooled the system to the reaction temperature, 

optimally 900°C, and cut off the H2/Ar flow. The Cu foils were then exposed to a 

100 sccm flow of ethanol vapor for 20 seconds, at 70 Pa. Next, the ethanol flow was 

cut off and the system was cooled down to room temperature, with a 300 sccm H2/Ar 

flow.  

After growth, we transfer the graphene film to Si/SiO2 via wet etching of the 

underlying Cu foils using poly(methyl methacrylate) (PMMA) as mediator. We 

spin-coat one PMMA (4% solution in anisole) layer on one side of the Cu foil, and 

stiffen the PMMA layer by baking it at 120°C for 2 minutes. The other side of the Cu 

foil was treated with O2 plasma for 1 minute in order to remove the graphene. We 

immersed the sample into copper etchant (1 M FeCl3) to etch the Cu foil, which 

would result in a PMMA/graphene film floating on the surface of the solution. The 

PMMA/graphene film was then washed with HCl solution and DI water for several 

 

Figure 3.1 The basic CVD growth and transfer procedures that we apply in our 

experiments. 
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times and was transferred on to Si/SiO2 substrate. Finally, we dissolved the PMMA 

film with a warm acetone bath to yield a graphene film on silicon substrate. The 

transferred graphene samples were characterized with Raman spectroscopy to 

evaluate the quality and the layer number.  

3.2.2 Annealing of Cu foils 

  In the growth procedure introduced above, Cu foils are annealed in high 

temperature (~1000 ˚C) for 40 minutes. This procedure is due to the fact that 

Cu-foil surfaces are mostly rough, with lots of wrinkles and steps, and the sizes of 

Cu grains are very small. Annealing at high temperature can effectively smooth the 

 

Figure 3.2 SEM images of Cu surfaces with different annealing times. a) and b) 

are pristine Cu surfaces, c), d) and e) are Cu surfaces after heating to 1000 ˚ C and 

immediately cooled down, f), g) and h) are Cu surfaces after a 40-minutes 

annealing process at 1000 ˚ C. 
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Cu surface, and enlarge the Cu-grain sizes, because of the low general energy 

statues of smoother surfaces as high temperature. [68] Figure 3.2 shows the effect 

of annealing. Here we understand that AFM observation may be a better method 

for such study on surface roughness, but we only applied SEM observation, since 

this improvement on the quality of Cu surfaces were already obvious under SEM; a 

more thorough investigation about the influence of annealing on Cu-surface 

roughness in shown in a published paper by our group [69]. 

Initially, pristine Cu surfaces are very rough (Figure 3.2-a, b), many step edges, 

grain boundaries, cracks, and so on are clearly visible with SEM. These 

imperfections in Cu surfaces are the preferred sites for the nucleation of multi-layer 

graphene, which would result in the low quality of graphene films. After heated to 

1000 ˚C and immediately cooled down, some larger Cu grains and soother 

surface can be seen (Figure 3.2-c, d, e). The effect of annealing is very obvious; 

even without any annealing duration, barely the heating up process can effectively 

increase the surface condition of Cu foils. Figure 3.2-f, g, h show the Cu surfaces 

after a 1-hour annealing. The grain size of Cu is much larger, and the surfaces 

become much smoother.  

Many have proved that the formation of graphene films can be affected by the 

underlying Cu surfaces, for example, the shape of graphene flakes can be six-lobed 

snowflake-like structures [2, 70], four-lobed star-like structures, or sometimes 

irregular shapes, and these patterns are believed to be related to the underlying 

Cu-surface morphology, such as the roughness or the crystal orientations. But 

generally, the interaction between graphene and Cu foils is relatively weak [71-73], 

compared with graphene on Ru(0001), where exclusively single perfect Moiré 

super-structures were observed.[74] Also, the reported growth results on 

single-crystal Cu (111) showed no much improvement compared with the results 

on poly-crystal Cu foils, and it is widely know that graphene flakes can 

continuously grow across Cu grain boundaries. So in general, we consider that the 

influence of Cu-surface morphology on the formation of graphene is only miner, so 

the pursuing of extremely smooth Cu surfaces with hours of annealing durations is 

unnecessary. We do acknowledge the importance on Cu lattice orientation towards 

the shape of graphene flakes, as shown in a published paper by our group.[69] But 
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we wouldn’t emphasize too much on its affect for the quality of graphene films, so 

we only anneal the Cu foil for 40 minutes each time, resulting in a relatively 

smooth Cu surface. In this chapter, all growth procedures include a 40-minute 

annealing unless mentioned otherwise.       

3.2.3 Results 

A typical result of ACCVD graphene  on Cu is shown in Figure 3.3. The SEM 

images of graphene before and after transfer (Figure 3.3-a, b) indicate good 

homogeneity and uniformity. The optical microscopic image (Figure 3.3-c) shows a 

clean and continuous transferred graphene film. We measured the light transmittance 

rate as a function of wavelength. When the wavelength of the light is 550 nm, the 

transmittance rate is ~96.95%, which is the signature of single-layer graphene.   

 

 

Figure 3.3. Characterization of ACCVD graphene grown at an optimized condition. 

SEM images of graphene on (a) Cu foil and on (b) Si/SiO2 substrate. (c) Optical 

Microscopic image of graphene on Si/SiO2 substrate. (d) Transparency rate of a 

graphene film transferred onto a quartz substrate. The transmittance rate is ~96.95% 

when the wavelength of the light source is 550 nm. (e) Raman spectra of four 

random points on the graphene film. All four spectra exhibit similar characteristics: 

I2D/IG is ~1.9, IG/ID > 20, and the FWHMs of 2D peaks are 35-39 nm
-1

. 
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Raman spectroscopy was conducted at four random points (Figure 3.3-e) in the 

transferred graphene film to show the quality, the layer number and the homogeneity 

of the graphene film. The 2D band exhibits a symmetric and narrow Lorentzian peak 

at ~2690 cm
-1

, with a FWHM of ~35 cm
-1

. The intensity ratio of the 2D-band peak to 

G-band peak (I2D/IG) is ~1.9. These are the clear evidences of single-layer graphene. 

The G peak/D-band intensity ratio (IG/ID) is higher than 20 at any random point, 

which indicates good quality of the graphene across the whole surface.  

We studied the growth of graphene with Raman spectroscopy as a function of 

pressure. Figure 2d shows a general trend of the pressure dependence. The spectra 

are normalized so that the G peaks are of the same intensity. The intensity of the D 

 

Figure 3.4. Graphene growth as a function of pressure. SEM images of graphene 

grown at (a) 70 Pa, (b) 150 Pa, and (c) 250 Pa. Single-layer graphene (1L), 

double-layer graphene (2L) and multi-layer (ML) graphene can be directly 

distinguished with SEM observation. (d) Raman spectra of graphene grown at 

different pressures. (e) Persentages of different layer numbers dependent on 

growth pressure.  
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peak increases dramatically with an increasing pressure. When the pressure is lower 

than 100 Pa, we observed the good quality of graphene (IG/ID>20). After transferred 

to Si/SiO2 substrate, graphene with different layer numbers exhibit good contrast in 

SEM observation. At 70 Pa, only few multi-layer graphene nucleation seeds can be 

observed on the surface of the first layer of graphene (Figure 3.4-a). When the 

pressure was higher than 100 Pa, the growth rate of multi-layer graphene became 

dramatically high, due to a higher concentration of carbon source. At 150 Pa, 

arbitrary double-layer/multi-layer islands, which appeared to be thicker and darker 

in the SEM image, were clearly visible (Figure 3.4-b). At 250 Pa, multi-layer 

formation grew rapidly, to cover the majority of the graphene film within a growth 

time of 20 seconds (Figure 3.4-c). No appreciable D-band (G/D ratio is more than 

20) was observed throughout the graphene film grown at a pressure lower than 100 

Pa. When the pressure was 250 Pa, D-band became much stronger (G/D ration 

decreased to ~2), which was mainly caused by the boundaries of multi-layer domains. 

 

Figure 3.5. Graphene growth as a function of temperature. (a) Raman spectra of 

graphene grown at different temperatures. SEM images of graphene grown at 

1050°C, 60 seconds before (b) and after (c) transfer.  
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We calculated the ratio of different numbers of layer dependent on reaction pressure 

based on SEM observation (Figure 3.4-e). At 70 Pa, more than 95% of the graphene 

film was, but when the pressure was enhanced to 250 Pa, only 56% was single-layer, 

and we observed 19% and 24% of double-layer and multi-layer graphene 

respectively. 

We found that the growth result of graphene was strongly related to the reaction 

temperature. Figure 3.5-a shows the Raman spectra of graphene film grown at 

different temperature. Base on the intensity of D-band, we believe we acquired the 

best quality of graphene at the temperature around 900°C and 950°C. On the other 

hand, when we increase the temperature to 1000°C or 1050°C, which are the suitable 

conditions for graphene growth from methane, we observed a high D peak (G/D 

~2.5), indicating the bad quality of graphene. In further SEM spectroscopy study, we 

found that when the growth temperature was higher than 1000°C, it was very 

difficult to make a full coverage of graphene film on the Cu substrate. We kept 

observing a lot of “holes” with hexagonal shape in the as-grown graphene film 

(Figure 3.5-b), where Cu surface was uncover with graphene, even with a longer 

CVD duration (60 seconds). In Figure 3b, the relatively brighter areas are Cu surface. 

After transferred to Si/SiO2 substrate, the morphology of the graphene film 

correspond to that on Cu substrate, and we could also observe these holes in the 

graphene film where SiO2 surface was uncovered (Figure 3.5-c), which proved that 

the judgment that there were uncovered holes in Figure 3b was accurate. These holes 

could be explained as the result of hydrogen etching, for the fact that the morphology 

of in Figure 3.5-b is very close to that observed by Y. Zhang et al [29] after a 

graphene hydrogen etching process. In our CVD reaction, the participation of 

hydrogen is unavoidable because it is a decomposition product of ethanol, and with 

higher reaction temperature, the amount of hydrogen is enhanced [30], thus we 

observed a hydrogen etching after the CVD reaction at high temperature (>1000°C) 

rather than at lower temperature (900°C).  

In several different experiments, we halted the reaction after different CVD 

durations to study the formation of graphene domains at different growth stage. 

Because we used a relatively high flow rate (100 sccm) of carbon source compare 

with other groups, and ethanol decomposes much easier than methane, growth rate 
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was much higher than previous results. At early growth stage of 5 seconds, small 

domains of single-layer graphene formed randomly over the whole surface (Figure 

3.6-a), and already nearly half of the area was covered with graphene within such a 

short CVD duration. Strangely, unlike previous results, the shape of these graphene 

domains was polygonal, rather than leaf-like or hexagonal, which might due to 

higher concentration of carbon gradients provided by the carbon source. A small 

D-band (G/D is ~10) could be observed in Raman spectrum at this stage, which 

was caused by the edges of these graphene islands. 

With an increasing growth time of 20 seconds, a full coverage of single-layer 

graphene could be achieved (Figure 3.6-b), while almost no double layer region 

formed, except for few multi-layer nuclei, as we already demonstrated that 

single-layer graphene and double-layer graphene showed clear contrast under SEM 

observation. This indicates that under this optimized condition, the growth rate of 

the second layer of graphene was well limited, and was much slower than that of 

the first graphene layer. The Cu substrate served as catalyst in the CVD reaction, 

and since the Cu surface had been covered with a single layer of graphene, which 

 

 

Figure 3.6. Graphene growth as a function of CVD duration. SEM images and 

Raman spectra of graphene grown in (a) 5 seconds, (b) 20 seconds, (c) 40 seconds, 

and (d) 2 minutes. SEM images and Raman spectra were taken after we transferred 

graphene onto Si/SiO2 substrates. 
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blocked the contact of carbon source and Cu, so the nucleation rate and growth rate 

of the second layer were much slower than those of the first layer. The Raman 

spectrum at this stage proved that the graphene film consisted of high-quality, and 

almost pure single layer.  

Although we were able to control the growth of single-layer graphene to a 

self-limited process to some extent, due to the high concentration of carbon 

gradients in the reaction process, given longer reaction time, the expansion of 

double-layer region was unavoidable. Figure 3.6-c shows a sample with a CVD 

reaction time of 40 seconds. In this stage, although most of the area was still 

single-layer graphene, the multi-layer regions were expanding already. From the 

SEM image, we can observe that the sizes of the second layer domains are 

obviously larger than those in Figure 3.6-b. The Raman spectra also display a little 

higher D-band. When the CVD duration was extended to 2 minutes (Figure 3.6-d), 

more than half of the film was double- or multi-layer graphene. Multi-layer 

graphene domain boundaries also resulted in the high D-band intensity (G/D is ~6). 

The relatively higher G-band (2D/G ~1.1) indicated that the majority of the 

graphene film is multi-layer.  

The growth condition we used in this study was similar to the low-pressure CVD 

(LPCVD) condition of graphene growth from methane. According to the detailed 

parametric study, graphene growth from ethanol displays three behaviors: first, 

lower CVD pressure results in higher quality of graphene. This is due to that lower 

concentration of carbon source causes lower graphene nucleation rate and lower 

growth rate in general, thus the graphene domains are relatively larger and the 

formation of the second layer is well limited. This point is consistent with graphene 

growth from methane. So the growth mechanism can be well explained with simple 

surface adsorption process which is utilized to disclose the formation of 

single-layer graphene by LPCVD from methane. Secondly, the growth rate is much 

higher compared with methane. This may be related to the fact that ethanol can be 

decomposed much easier than methane, which provide a higher concentration of 

carbon gradients, hence, once the condition of graphene nucleation is reached, the 

growth of graphene domains is much faster. Thirdly, the self-limited growth 

behavior is not as good as methane with the similar CVD conditions. For methane 
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precursor with similar CVD conditions, it is reported that the self-limited behavior 

could be preserved with CVD duration as long as 1 hour, but it is only 30 seconds 

in our case. Thus, the growth time is very important to synthesize single-layer 

graphene from ethanol, but still, it is controllable.    

 

3.3 Improved growth with Cu pocket 

As mentioned above, graphene growth on Cu from ethanol may result in severe 

etching due to certain SiO2 particles from the quartz tube and the strong etching 

effect at high temperature (Figure 3.5). To solve this problem, we begin to fold Cu 

foils into pockets, so that the cu surface in the inside of the pocket is well protected 

from SiO2 contamination. Also, according to R. Jacobberger and M. Arnold [75], 

there are at least two more advantages of this Cu pocket: a more steady flux of 

carbon source can be obtained, and the partial pressure of carbon source is further 

decreased, due to the narrow path at the pocket edge for carbon source to go 

through to reach the inside. A photo of the Cu pocket is shown in Figure 3.7.We 

believe more advantages are brought by this Cu pocket, including restraining 

sublimation of Cu, which would result in a much stable environment inside the 

pocket, and longer the possible CVD durations, which is very important as we will 

discuss later.  

 

Figure 3.7. Photo of a Cu pocket 
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By utilizing the Cu pocket, and a small decrease in flow rate, we found that the 

nucleation density of graphene is significantly reduced (Figure 3.8). Without the Cu 

pocket, the shape of graphene flakes are almost random, and the nucleation density 

is about 0.5 µm
2
, allowing a graphene grain size of about 2 µm in average (Figure 

3.8 b). Besides, after these small graphene flakes emerge together into a big 

continuous graphene film, lots of those white particles can be observed, and these 

contaminations are one major origin of defects due to growth preference of 

multi-layers and etching. On the other hand, after using the Cu pocket, we find that 

 

Figure 3.8. SEM images of graphene grown on Cu foils a), b) with and c), d) 

without Cu pocket. a) and c) are continuous graphene films grown at the same 

CVD conditions as b) and d) respectively.  
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the nucleation density is reduced to nearly 0.1µm
2
, resulting in a graphene domain 

sized of 10 µm (Figure 3.8 d), so the amount of grain boundaries after graphene 

flakes grow together is dramatically reduced. Also, the continuous graphene film 

grown in this way is very clean, and no obvious contamination is observed (Figure 

3.8 c).  . 

The quality of graphene films grown using Cu pocket is further confirmed after 

transferring it to Si/SiO2 substrates. We show the photograph (inset of Figure 3.9 a) 

and the optical image (Figure 3.8 a) of graphene transferred to a Si/SiO2 substrate. 

A clear boundary of this graphene film can be observed in this optical image, and 

the whole film looks continuous and homogeneous. Furthermore, by using 

scanning Raman spectroscopy, we confirm the homogeneity of this graphene film 

(Figure 3.9 b). For an area as large as 15 µm × 15 µm, the 2D to G intensity map 

demonstrates that nearly 90% is single-layer graphene. 

The evolution of graphene growth depending on CVD duration is shown in 

Figure 3.10. In merely 2 seconds after we flow in the ethanol vapor, some nuclei of 

graphene are observed. Initially, the shape of these small graphene flakes is more 

circular. From 5 to 30 seconds, these graphene islands expand rapidly, and the 

 

Figure 3.9. a) Photo (inset) and optical image of graphene on Si/SiO2 substrate. 

b) Raman map plotted based on the 2D to G intensity. This sample is grown 

using Cu pocket. 
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shape becomes very dentritic. In 5 minutes, the graphene domains emerge together, 

forming a continuous graphene film. If we keep flowing the carbon source for 

another 15 minutes, the morphology changes very little.  

From this evolution based on CVD durations, we find two interesting points. 

First, the shape if graphene flakes is very dentritic, suggesting strong 

diffusion-limited growth behavior. Second, after we acquire continuous graphene 

film at 5 minutes, even if we continue to flow ethanol vapor, the there wouldn’t be 

any growth of the second layer, this means that by applying this Cu pocket, we gain 

a much bigger window for the high percentage of single-layer graphene, which we 

refer to as self-limited growth.  

Six-lobed dendritic shapes of graphene domains demonstrate that the growth is 

a substrate-mediated process rather than a direct adsorption of carbon atoms from 

the gas phase. Based on the observations above, we propose the growth mechanism 

as follows: i) Ethanol decompose into different products, which are catalyzed into 

active carbon species by copper and chemically adsorbed on its surface, and 

nucleate at supersaturation sites. ii) The diffused carbon atoms on the copper 

surface are captured by the edge of the nuclei and form a circular shape due to 

initial “capillarity limitation”. iii) When the nucleated islands grow further, the 

 

Figure 3.10. SEM images of graphene on Cu foil with different CVD durations 
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anisotropy of surface diffusion on the copper surface depending on the 

crystallographic orientation results in the dendritic shapes.  

3.4 Summary 

In this chapter, the CVD growth of graphene on Cu substrates using ethanol as 

carbon source is discussed. With optimized conditions, we were able to synthesize 

large-scale single-layer homogeneous graphene films on Cu foils. Small Raman D 

bands at random locations indicate the low defect level. With parametric study, we 

show that the formation of bi-layer and multi-layer graphene can be restrained be 

lowering the CVD reaction pressure. To solve the problem of high-temperature 

etching, we utilized Cu pockets. By Cu pockets and raising growth temperature, 

graphene with higher quality, i.e., fewer contamination, bigger graphene domain 

size, more dominant single layer, is synthesized. Furthermore, we find the growth 

can be self-limited, giving us a much bigger window and thus better control of the 

good quality of single-layer graphene.  

Based on the observations, we propose the mechanism of a diffusion-limited 

growth procedure to explain graphene growth on Cu from ethanol.  

  



 

Chapter 4 

Synthesis of large single-crystal graphene 

4.1 Approaches to increase the size of graphene flakes 

As shown in Chapter 3, typically, CVD-derived graphene is polycrystalline, 

which is the merging of many small single-crystal graphene flakes. As has been 

proved by literature and the observation of ourselves, the orientation of each 

graphene flake is almost random, rather than corresponding to the lattice direction 

of the Cu facet underneath them. Thus, the boundaries between these small 

graphene flakes become a major origin of defect, because obviously C atoms 

located at the boundaries are disoriented. Former studies showed that, not only the 

electrical properties are decreased due to the existence of grain boundaries [76], but 

also mechanical strength is reduced [77]. The most obvious way to reduce grain 

boundaries is to increase the sizes of single-crystal graphene flakes, which almost 

equals to minimizing the number of graphene nuclei, as would be explained next. 

Other aspects, such as the shape of graphene flakes, also affect the amount of grain 

boundaries, for that obviously dentritic graphene flakes contain more boundaries 

than round or hexagonal ones, but we will see that this problem would be 

automatically solved once we are able to increase the size of graphene flakes. On 

the other hand, if graphene flakes are epitaxially grown on the substrate, their 

orientation would correspond to the metal substrate below, so even if the size of 

each graphene flake is small, they could merge together without creating any 

disoriented boundaries, given the fact that the substrate itself is single-crystal. A 

very recent work showed that wafer-scale single-crystal graphene can be realized 

by merging epitaxial small graphene flakes on single-crystal germanium substrates 

[78]. But this method is beyond the research of this thesis, and in this chapter, we 

focus on the growth of graphene large flakes using poly-crystal Cu substrates.       
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To achieve this, we must understand the mechanism of nucleation and growth of 

graphene flakes on metal substrates, and how each factor in this mechanism is 

governed by the microscale CVD conditions. The mechanism of 2D nucleation and 

growth of graphene is discussed intensively in recent years, and a widely accepted 

mode is explained as following: i) the carbon source is adsorbed on the Cu surface, 

and decompose to form carbon species; ii) the carbon species are defused on Cu 

surfaces, due to a relatively low surface-diffusion energy of C on Cu (~0.06 eV) 

[79-80]; desorption of these carbon species exist simultaneously on the Cu surface; 

iii) As the flow of carbon source continues, the concentration of carbon species 

increases, until the critical supersaturation concentration (Cnucl) is reached, and 

graphene nuclei are formed; iv) Carbon species near each nucleus are likely to be 

captured by the nucleus, resulting in a lower concentration of adatoms around the 

stable nucleus as a result of spontaneous growth, forming a so-called nucleation 

exclusion zone in which the formation of another nucleation is practically impossible 

[81]; v) As each nucleus depletes the carbon species close to it, the concentration of 

surface carbon species decreases to an equilibrium level (Ceq), at which the 

competition among the attachment of C on graphene edges, C surface diffusion and 

the desorption of C reaches equilibrium [82]. The exact form of CxHy defused on Cu 

surfaces is not well-defined,[83] so they are referred to as “carbon species” in this 

thesis. This mode is derived from the conventional 2-dementinal nucleation mode as 

explained by V. Robinson and J. Robins [84], and it enables us to simplify the 

problem. For instance, it is often observed that, despite of the nucleation density, 

almost all nuclei are formed at the initial stage of the CVD reaction, and afterwards, 

during the long duration of the growth of graphene flakes, hardly any new nuclei are 

formed, even if the coverage of graphene on Cu surface is still very low. By this 

mode, we explain this phenomenon through the fact that Ceq at the steady growth 

stage is lower than Cnucl which is required for nucleation. So increasing the size of 

graphene single crystals almost equals to decreasing the nucleation density. By 

applying the V. Robinson and J. Robins’s mode to the nucleation of graphene, H. 

Kim et al. derived the relationship for the saturation nucleus density: 
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              (1)  

where PCH4 is the partial pressure of methane, Edes is the desorption energy of 

carbon species, Eatt is the energy barrier of attachment for the capture of carbon 

species by supercritical nucleus, Ed is the activation energy of surface diffusion of a 

carbon species, and Ead is the activation energy for adsorption of carbon source on 

the Cu surface [85]. Tuning the factors in (1) by microscale processes would directly 

affect the nucleation density. For this purpose, early efforts have been focused on 

smoothing Cu surface, reducing partial pressure of carbon source, and tuning C : H 

ratio.  

As proved both experimentally and theoretically, nucleation often occurs at 

imperfections on Cu surfaces, such as impurities, step edges, defects, etc, due to 

lower nucleation barrier at these sites. Hence, electro-chemical polishing and 

long-duration annealing, which considerably smooth the Cu surface and increase 

the size of Cu graphene, resulting in a smoother surface of Cu with less defects, 

step edges and impurities, became very effective methods in reducing nucleation 

density. Given enough CVD duration, the size of a graphene flake that expands 

from a single nucleus could be as large as 2.3 mm. On the other hand, although 

imperfections on Cu surfaces can be reduced significantly, they can hardly be 

eliminated. Furthermore, with Cu, the energy in C-Cu bond is low, so the nuclei are 

not restricted to imperfection sites; rather, it occurs on plain area on Cu terrace, 

only with a lower possibility than that on impurities. Thus, this smoothing surface 

procedure may not be able to reduce the nucleation density too much. 

Very small flow of carbon source would also dramatically reduce the nucleation 

density; because low concentration of C diffused on Cu surface make it less 

possible for a local super-saturation nucleation. But a very important disadvantage 

of small flow of carbon source is that, it also slows the growth rate of graphene 

flakes, thus, as reported by previous work it takes more than 24 hours to reach 

millimeter size. Even if further lowering the flow rate can lead to even lower 

nucleation density (0.1 nuclei/mm
2
), considering the evaporation of Cu foil in the 
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high-temperature environment, it became really unrealistic to grow very large 

graphene single crystals with only this way.  

Tuning the ratio of hydrogen can also affect the nucleation density. Hydrogen is 

believed to have two roles in the CVD growth of graphene. First, it serves as a 

catalyst to form carbon species (CxHy), which are the reaction gradient for 

sp
2
-bonded carbon lattices. Second, it is the etching reagent of graphene, and by 

etching away the active growth front on graphene edges, it makes the growth speed 

at different sites on graphene edges even, resulting in smoother edges and better 

crystalline.[86] For graphene growth from methane, it is crucial to find the 

optimized ration of C : H in CVD reaction in order to acquire high quality. But its 

influence in controlling the nucleation density is minor, compared with its effect on 

controlling the shape and orientation of graphene flakes.  

4.2 Effect of heating without hydrogen 

  Base on the discussion above, beside these three ways, some new methods must 

be found in order to grow centimeter-size single-crystal graphene. A 

seem-to-be-random trail proved to be very effective in such matter. In my 

experiments, during the heating and growth processes of CVD procedure, a flow of 

3% H2 in Ar was often used in order to keep the Cu surface reduced (Here, the 

effect of H2 for ethanol may not be a catalyst or an etching reagent, for the fact that 

the decomposition of ethanol is very easy and that the ration of H2 that we use is 

very small). But when we use only Ar flow during the heating process, the 

nucleation density decreased significantly. Figure 4.1 shows the difference in 

growth procedure and the results, in which H2 is not involved only in the heating 

stage, and 3% H2 in Ar is still used in the growth stage. We observe a 5-time 

decrease in the nucleation density for this new procedure, which dramatically 

reduces the amount of grain boundaries.  

  Parallel to this study, some other groups published results using almost the same 

method. They show that they can grow graphene single-crystals to millimeter sizes 

when heating without hydrogen. But they had essential differences regarding the 

mechanism behind this phenomenon. L. Gan and Z. Luo proposed that during 

heating process, the Cu surface would be oxidized by O2 from leakage, due to lack 
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of H2. And afterwards, when CVD reaction temperature was reached, they flow H2 

again to anneal the Cu foil, and during this annealing and reduction, Cu particles 

were formed on the Cu surface, which would act as nucleation center in the later 

growth process, as they confirmed by AFM observation.[1] In another work, H. 

Zhou and colleagues argued that there was a pristine oxidation layer on the Cu foil, 

and due to lack of H2 in the heating process, the oxide layer was unreduced and 

preserved until the growth process, which would passivate the activity of Cu, thus 

leaded to a low nucleation density.[6]  

  We tend to believe the second theory, since it is more straight forward and 

obvious. For the first theory, L. Gan et al. failed to explain the nature of these 

particles, i.e., why the oxidation-and-reduction process would create these particles. 

I conducted more experiments to further investigate this phenomenon, which I will 

explain in detail in 4.4.  

 

Figure 4.1. Schematic of a change in growth process and its effect on the 

nucleation density. More than 5-time reduction in nucleation density is observed 

without involving H2 in the heating process.  
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4.3 Extremely low flow of ethanol 

4.3.1 Low nucleation density using extremely low flow of ethanol 

Although I’ve shown that heating without H2 can significantly reduce the 

nucleation density, but only allows the size of each flake to be as large as 20 

microns at most. So I started to try to use very small flow of ethanol. Prior to this, 

we normally use a flow of more than 5 sccm. Now, I reduce the mass flow by 100 

times, using only 0.05 sccm. With this procedure, the nucleation density decreased 

to about 0.8 nuclei/mm2, allowing the sizes of graphene flakes to be as large as 

hundreds of microns. In figure 4.2, we show several pieces of graphene flakes as 

large as 200 µm (this particular sample is grown at 1065 ˚C, with a flow of 0.05 

sccm ethanol and 300 sccm Ar/H2, using Cu pocket, 4 hour CVD duration). 

Moreover, the shapes of these graphene flakes are approximately hexagonal, in 

contrast with the dentritic shapes as shown before, indicating the good crystalline 

 

Figure 4.2. SEM images of graphene grown on Cu foil with extremely low mass 

flow of ethanol, and heating without H2. b and c on the right side are images 

corresponding with two flakes in image a, only with a larger magnification.  
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within each flake. This is because by lowering the mass flow, the balance of growth 

and etching in the CVD reaction shifts towards etching, so the growth speeds at 

different sites along the graphene edges are more even, resulting in a better 

crystalline.  

In order to further confirm the quality of this large graphene flakes, we transfer 

some samples to Si/SiO2 substrates, and conduct Raman spectroscopy observation. 

Judging by the obvious contrast between graphene areas with different numbers of 

layers, we found that almost 90 percents of the whole graphene flake is single-layer, 

but at the core, there is about 10-percent area covered with bi-layer or multi-layer 

graphene. This is also confirmed by Raman spectroscopy. Four spectra from 

random locations are shown in Figure 4.3, showing typical signature for 

 

Figure 4.3. a. Optical image of graphene transferred to Si/SiO2 substrate. b. 

higher-resolution image of the center part of the graphene flake in a. c and d are 

the Raman spectra of a and b, corresponding to the locations marked by circles 

with same colors.   
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single-layer graphene, each with a very small D-peak, indicating low defect level. 

Raman spectra taken at the center of this flake shows the existence of bi-layer and 

multi-layer graphene. 

4.3.2 Dependence on growth temperature 

Further study shows that the temperature of CVD reaction is essential in 

controlling the crystalline nature of resulting graphene flakes. In Figure 4.4, we 

show four SEM images of graphene flakes grown at different temperatures, while 

other conditions are the same. At 1000 ˚C, the shapes of flakes are almost random. 

At 1050 ˚C, the shape is typically six-lobed dentritic. At 1060 ˚C, the shape looks 

to be approximately hexagonal, but the edges are still very rough. At 1070 ˚C, the 

edges are very smooth, and the whole flake seems to be in good single-crystalline, 

following the orientation of graphene lattice.  

 

Figure 4.4. SEM images of graphene on Cu foil grown at different temperature. 

All the other parameters are the same for these samples except for the CVD 

temperature.   
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We believe this evolution depending on temperature is the result of shifting in 

the equilibrium of growth and etching. With higher temperature, the increase in 

etching effect is faster than that of growth speed. Although the balance is still in 

favor of growth, but etching becomes significantly strong and comparable to 

growth. For the fact that the growth active sites (marked by circles in Figure 4.4), 

such as growth front points on these dentritic branches, are also the etching active 

sites, the growth speed at these front points are reduced to the same level as other 

locations along the edges, so the growth speeds are even, resulting in a hexagonal 

shape depending on the orientation of the lattice of graphene. This result is 

corresponding to the observation in Chapter 3, where high temperature leads to 

etching holes across the graphene film. Only, in Chapter 3, the main etchant could 

be the decomposition product of ethanol, such as CO and H2O, because the ratio of 

H2 is very low compared with ethanol; but here, we are not sure what is the main 

etchant, for that the concentration of H2 is much higher than that of ethanol, but 

ethanol could still provide enough etchant to maintain a etching speed same level 

as the growth speed, in which the carbon source is also provide by ethanol 

decomposition. This stronger etching effect at higher temperature can also be 

circumstantially proved by the sized of graphene flakes grown. Clearly, as the 

temperature increases, the size of graphene decreases, and the decrease is even 

faster when it’s close to 1070 ˚C, suggesting that near 1070˚C, the etching rate is 

almost the same as growth rate.  

Although we found that higher temperature is more favorable in maintaining 

the good shape of graphene flakes, we decided that the suitable temperature for the 

growth of graphene lager flakes should be 1065 ˚C, for that the melting point of Cu 

is 1086 ˚C, and near this temperature, the sublimation of Cu is strong, so with 

long-duration CVD, the thin Cu foil can be “burned through” with many holes, and 

eventually all sublimate out, leaving nothing behind, as has been confirmed by 

many experiments. 1065 ˚C is a relatively “safe” temperature allowing us to 

conduct CVD for many hours, but still forms graphene with good shapes on the 

other hand. So from here in this thesis, unless specially noted, all of our samples 

are grown at this temperature.  
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4.4 Millimeter-size graphene single crystals through 

pre-oxidation 

4.4.1 Growth method  

With low mass flow rate and heating without H2, we can grow large graphene 

flakes to hundreds of microns. Following the discussion in 4.2, we still need to 

prove which theory is right regarding the effect of heating without H2. So we think 

if the oxidation layer on Cu surface would deactivate the Cu, why not heat it in air 

to oxidize it even before the CVD procedure. So we begin to bring a new process in 

to the CVD growth of graphene. We heat the Cu on a hot plate in air (typically 200 

˚C) for several minutes before we fold it into a pocket and load it into the CVD 

chamber (Figure 4. 5 a). After heating in air, the surfaces of Cu foils are clearly 

oxidized, showing a darker color, close to that of CuO (Figure 4. 5 b).  

After oxidation in air, we continue to conduct the rest of the CVD procedure, 

using all the positive tricks that discussed above, including heating without H2, Cu 

pocket, extremely low flow of ethanol. The detailed procedure is shown in Figure 

4.5 a.  

 

Figure 4.5. Pre-oxidation growth of graphene on Cu foil. a. schematic of the 

growth procedure. b. the photos of Cu foils before and after heating in air.   
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4.4.2 Characterization by Raman spectroscopy 

By adding this process we found that the nucleation density is further reduced. 

In Figure 4.6, we show several SEM images of graphene growth at this condition. 

There graphene flakes are more than 2 mm in size, some are even larger than 3 mm. 

The shapes of these graphene flakes are generally hexagonal, but the edges are not 

very smooth, and the angle is sharper than 120 ˚ at points, as indicated by the 

optical image after we transfer the graphene flakes onto Si/SiO2 substrates. We also 

conducted Raman spectroscopy at random locations, and they all exhibit typical 

single-layer graphene signature, and the D-peaks were very small compared with 

G-peak, suggesting the low defect level.  

To further confirm the quality of our graphene samples, we use scanning Raman 

to obtain Raman signals over a relatively large area. We plot several maps based on 

the intensities of D peaks, G peaks and 2D peaks at 2 different locations. Based on 

these Raman maps, we observe that the graphene is homogeneous in large area. 

The intensity of 2D band is always nearly 2 times of the G band across the whole 

 

Figure 4.6. a), b) and c) are typical SEM images of large graphene flakes on Cu 

substrates. d shows one corner of a big graphene flake, after it is transferred to 

Si/SiO2 substrate. e shows Raman spectra of four random locations in the 

sample shown in d.   
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areas measured. The intensity of D band is very small, almost the same level as on 

Si/SiO2, indicating low defect level on the whole flake. But we can observe a 

strong D band along the edge of this graphene flake, which is almost half the 

intensity of G band. This very strange considering the result of other groups, in 

which they show that even at graphene edges, the intensity of D band is still low, 

corresponding to a zigzag edge (Figure 4.8 a), and these zigzag edges are more 

stable than the armchair edges, so they are more favorable for the formation of 

smooth edges. But for our graphene, maybe the edges are not all zigzag, but rather 

armchair. On a closer look, we find that at the corners of the branches, i. e., at the 

growth front points, the D-band intensity is extremely high, meanwhile, at the 

withdrawn parts of the edges, the D-band intensity is very low (Figure 4.8 b). This 

 

Figure 4.7. a, b and c are typical SEM images of large graphene flakes on Cu 

substrates. d shows one corner of a big graphene flake, after it is transferred to 

Si/SiO2 substrate. e shows Raman spectra of four random locations in the sample 

shown in d.   
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suggests that armchair edges dominate on the fast growing fronts, but at slower 

growing sites, zigzag edges are the major components.  

This gives us a good insight on the growth kinetics. Conventionally, for the 

purpose of crystalline, when using methane precursor, other groups always use a 

high concentration of H2 (200—400 times of CH4) in the CVD reaction, thus the 

etching rate is almost the same as growth rate, resulting in a very smooth edge, but 

also greatly reduces the general growth speed. In this way, the attachment of C on 

graphene edges is reaction-limited, meaning there is a relatively high reaction 

barrier for Cs to be captured by graphene edges to form new sp
2
 bonds. Even if the 

diffusion of C on Cu is high (this means for any location on graphene edges, more 

C atoms would reach this location in a certain period of time), many of these C 

atoms that reach graphene edges would not be captured, but just diffuse away, due 

to the high reaction barrier. In this case, the graphene edges are always zigzag, 

which is more stable because of its high reaction barrier for both growth and 

etching. Raman spectra on zigzag graphene edges only exhibit very little D-band 

intensity. 

But in our case, the high D-band intensity on edges clearly suggests the 

 

Figure 4.8. Edge orientations of graphene flakes. a. schematic of graphene flake 

with standard zigzag edges. b. D-band-intensity map of a corner of our graphene 

flake, in which growth front point and withdrawn point are marked by green and 

yellow circles respectively. c. schematics of edge orientations along one 

“branch” in b.  
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existence of armchair edges. In Figure 4.8 b, brighter color suggests armchair edges, 

but darker color along the withdrawn parts of the edge suggests possible existence 

of zigzag edges. Compared to zigzag edges, armchair edges are very active, which 

leads to a diffusion-limited growth mechanism. In diffusion-limited growth, 

diffused C atoms that reach the graphene edges are very likely to be captured and 

form new sp
2
 bonds, so the reaction rate (growth rate) is predominantly limited by 

the supply (diffusion) of C, rather than the attachment of C atoms on graphene 

edges. In this way, given sufficient diffusion of C (enough involvement of carbon 

source), the growth rate could be much faster than that of reaction-limited growth 

(zigzag edges). But this often result in a dentritic shape of graphene flakes, due to 

the fact that graphene growth front corners have a much wider angle from which C 

species diffuse towards them, but at the withdrawn parts, the angle becomes very 

narrow, the chance of accepting diffused C species is much lower, thus the growth 

speed is also quite low. These uneven growth rates are not appreciable, for that not 

only they create rough edges, but also they may disorder the crystalline inside each 

graphene flakes. But in our case, we find our graphene flakes are still 

single-crystalline, which I would discuss later.  

Interestingly, we may observe both armchair and zigzag edges along the same 

“branch” of the dentritic growth front. As marked by a green circle in Figure 4.8 b, 

high intensity of D band suggests the armchair orientation; but at the bottom of the 

same “branch”, the D band is very weak, suggesting zigzag orientation, as marked 

by a yellow circle. The direction along this “branch” from top to bottom also 

roughly changes 30˚, which is exactly the angle between zigzag and armchair 

orientations. Their structure schematic is shown in Figure 4.8 c. 

4.5 Growth-behavior dependence on CVD parameters 

4.5.1 oxidation-level dependence  

To find the optimize conditions for the growth of graphene large flakes, we 

investigated different conditions of the CVD reaction. The first parameter that we 

investigate is the level of oxidation. Since we lack any reliable equipment for 

detecting the exact oxidation level of Cu surface (such as thickness of oxide layer, 
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or the ratio of Cu atoms and O atoms), here we set the temperature for oxidation in 

air at 250 ˚C, and simply use the time of this heating in air to represent the level of 

oxidation, for that we do observe the change of color on Cu surfaces as we increase 

the time of oxidation.  

Of course, different oxidation level results in different nucleation densities, as 

shown in Figure 4.9. With no pre-oxidation, the nucleation density is around 8 

nuclei/mm
2
, which would result in a maximum of graphene grain size of about 0.5 

mm, when the flake is far for other ones by chance. Upon 10-minute oxidation, the 

improvement is already obvious, and we observe a 1-order lower nucleation density, 

letting us to grow graphene flakes as large as 1 mm in average. For 30-minute 

oxidation, the nucleation density is reduced to 0.3 nuclei/mm
2
, and for 90 minutes, 

 

Figure 4.9. SEM images of graphene on Cu foils with different oxidation level. 

The CVD durations of these samples are different, for the convenience in 

counting nuclei. The nucleation densities are approximate numbers based on the 

statistics of an 1 cm×1 cm are for each sample.  
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we can decrease the nucleation density of 0.1 nuclei/mm
2
, and grow graphene 

flakes more than 3 mm. We observe that although the nucleation density decreases 

as the oxidation time increases, this relation in not linear, because the after the 

surface of the Cu foil is oxidized, the dissolve of O in Cu is blocked by the oxide 

layer, so the rate of oxidation decreases as it continues, thus the actual oxidation 

level (such as thickness of oxide layer, or the ratio of Cu atoms and O atoms) at 30 

minutes is far from 3 times of that at 10 minutes. Note that although the nucleation 

density allows us to grow graphene as large as 1 cm, but due to the growth rate and 

the sublimation of Cu, we can only grow 25 hours, resulting in a graphene flake as 

large as 5 mm, and this low growth rate is something we need to improve.  

To further confirm the role of oxygen in this decrease of nucleation density, we 

 

Figure 4.10. SEM images of graphene flakes on Cu foils after procedures 

combining pre-oxidation and annealing in H2. The nucleation densities are 

approximate numbers based on the statistics of an 1 cm×1 cm are for each 

sample.   
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conducted several compare experiments. In these experiments, we first heat the Cu 

foils in air to oxidize it, than we anneal them in 1065 ˚C for some time before we 

introduce the ethanol flow to initiate CVD growth. In this way, the oxide layer 

would be reduced a little; since the annealing itself would smooth the Cu surface 

resulting in a decrease in nucleation density, but the reduction would increase the 

density, so we expect that the nucleation densities following this 

oxidation-and-reduction procedure would be in between of those of no oxidation at 

all and those of only oxidation.  

Figure 4.10 shows the results. For the sample in Figure 4.10 a, we oxidize the 

Cu foil for 10 minutes, and anneal it in H2/Ar for 4 hours, before we flow in the 

ethanol vapor to initiate the growth. We believe after this long duration of reduction, 

almost all the surface oxygen is removed. As a result, we observe 1.3 nuclei/mm
2
, 

which is 1.5 times the density of only 10-minute oxidation (Figure 4.9 b), but still 

much lower than the one without any oxidation at all (Figure 4.9 a). Similar results 

are observed in Figure 4.10 c, for which we oxidize the Cu foil for 10 minutes, and 

reduce in H2/Ar for 50 minutes. On the other hand, if we only anneal the Cu foils in 

H2/Ar for 4 hours, without any oxidation process, we observe a much higher 

nucleation density of more than 15 nuclei/mm
2
. This indicates that if the Cu foil is 

pre-oxidized, even after long duration of reduction, some O would still be left in 

the Cu foil. For the sample in Figure 4.10 d, may be there is some small quantity of 

O on Cu surface, but after long-term annealing, these surface Os are most likely 

eliminated. For the case in Figure 4.10-a and c, after long-duration reduction, even 

if O on the surface of Cu is removed, there are still some dissolved in the Cu foil 

that cannot be removed completely. At 250 ˚C, the solubility of O in Cu is very low 

(less than 20 at. ppm), but as temperature increases to 1065 ˚C, the solubility also 

rises (several hundred at. ppm). Since we do not use H2 during the heating process, 

when heated to 1065 ˚C, Os on the surface are preserved, and some of them would 

dissolve inside the Cu foil, which are hard to remove even by long-term reduction. 

And during CVD growth, it is possible that some of these Os dissolved inside the 

Cu foil would precipitate to the surface and deactivate the Cu surface, resulting in a 

lower nucleation density, but the concentration of these Os are not as high as 

without a reduction process at all, so the nucleation density is also higher.  
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In Figure 4.10 b, we oxidize the Cu foil for 2 hours, and anneal it for 30 

minutes. The nucleation density is almost the same as the one only oxidized for 30 

minutes. Obviously, some surface Os are removed, and nucleation density becomes 

higher. This further proved the surface oxide layer is the essential origin for the 

decrease in nucleation density. Now let’s continue the discussion in chapter 4.2, 

where I summarize two opinions proposed by two different groups, regarding the 

reason why heating without H2 would lower the nucleation density. Based on the 

evidence in Figure 4.9 and Figure 4.10, we believe that the idea provided by H. 

Zhou and colleagues is more convincing. By comparison of Figure 4.9 a and Figure 

4.10 b, we find that without any oxidation, long term annealing can only reduce the 

nucleation density, and this is clearly caused by the lack of oxide layer on Cu 

surface. Besides, the origin of those particles as observed by L. Gan and Z. Luo is 

not clear, and the particles could be caused by contamination from the quartz tube, 

impurities in Cu foils, etc. Furthermore, even if these particles served as nucleation 

center in L. Gan and Z. Luo’s experiments, it does not contradict to the explanation 

that oxide layer passivates the Cu surface and makes it harder for nucleation. L. 

Gan and Z. Luo themselves showed that nucleation forms only with large enough 

particles; so oxide layer might be the reason that small particle cannot initiate 

nucleation.  

4.5.2 Ethanol partial pressure dependence 

The pressure and flow rate of carbon sources can affect growth behavior 

greatly in CVD reactions. As mentioned in 4.5.1, the growth rate of our graphene 

flakes is very low, and the best way to accelerate it is increasing the pressure or 

flow rate of carbon source. Since our graphene grows in a Cu pocket, so we believe 

that there is almost no flow inside the pocket, and ethanol molecules or carbon 

species must dissolve into the pocket. Since as analyzed our graphene follows the 

diffusion-limited growth, by increasing the flow/partial pressure of ethanol, more 

carbon is provided and diffused, thus the growth rate can be increased. We conduct 

experiments with increased flow rate and pressure, as shown in Figure 4.11.  
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The lowest controllable flow for our mass flow controller is 0.03 sccm, and we 

have been using this low flow rate to realize low nucleation density. During growth, 

along with this 0.03 sccm ethanol flow, we also flow a 300 sccm 3% H2 in Ar, and 

the total pressure is 300 Pa.. So the partial pressure of ethanol is around 0.03 Pa. 

Now we increase the flow rate a little to 0.04 sccm, so here the partial pressure of 

ethanol is also increased to 0.04 Pa. For another sample, we still use 0.03-sccm 

ethanol and 300 sccm H2/Ar, but we increase the total pressure to 400 Pa, so the 

partial pressure of ethanol is also 0.04 Pa. The results are shown in Figure 4.11. 

Both samples are pre-oxidized for 30 minutes, so when applied with old conditions 

(partial pressure of ethanol is 0.03 Pa), the nucleation density is around 0.3 

nuclei/mm
2
. But with this increase in partial pressure, the nucleation density rises 

dramatically to about 4 nulei/mm
2 

(Figure 9.11 a, b), more than 10 times higher. 

Figure 9.11 a and b exhibit almost the same morphology, suggesting that flow rate 

is not a variable inside the Cu case, and increasing flow rate is the same as 

increasing partial pressure of ethanol. But we are surprised to see that the 

nucleation density rises 10 times only with a 33% increase in partial pressure of 

 

Figure 4.11. SEM images of graphene flakes on Cu. These samples are grown at 

1065 ˚C, with a 30 minute pre-oxidation. The only difference is that during 

CVD growth, for a, the flow is 0.04 sccm ethanol and 300 sccm H2/Ar at 300 

Pa, and for b, the flow is 0.03 sccm ethanol and 300 sccm H2/Ar at 400 Pa. The 

nucleation densities are approximate numbers based on the statistics of an 1 cm 

× 1 cm area for each sample.   
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ethanol. Not only the density rises, but also, the shapes of graphene flakes become 

very dentritic. The balance of growth and etching is somehow disturbed, and 

obviously growth rate at corners is much stronger than etching effect. Although we 

do observe a increase in growth rate (for one single flake, that growth rate increases 

nearly two times), this high nucleation density and uneven edges greatly lower the 

quality of graphene, thus this higher partial pressure of ethanol is not suitable for 

the growth of graphene single crystals.   

4.5.3 Growth duration evolution 

To get a more clear insight on how graphene nuclei gradually expand into large 

flakes, we conduct comparison experiment by stopping CVD growth at different 

duration, and observe them with SEM. Three results are shown in Figure 4.12. All 

three samples were pre-oxidized for 1.5 hours, and grown at 1065 ˚C, and they 

were stopped at 2 hours, 7 hours and 11 hours respectively. For graphene growth at 

this condition, within 2 hours, we can hardly observe any nucleation, and this is 

 

Figure 4.12. SEM images of graphene flakes on Cu with CVD durations of a) 2 

hours, b) 7hours, and c) 11hours. These three samples are growth with same 

conditions except CVD durations. The conditions are: 1.5- hour pre-oxidation, 1065 

˚C, 0.03 sccm ethanol and 300 sccm H2/Ar, and 300 Pa total pressure. 
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probably because that the nucleation density is very low, so if the nuclei are too 

small (less than 0.1 mm), it is very hard to find them by SEM. So here we show the 

evolution of growth for the stage of 2 hours.  

In 2 hours, we start to observe graphene flakes with size of about 0.1 mm 

(Figure 4.12 a). It’s with a typical six-lobed dentritic shape. The nucleation density 

at this stage is about 0.1~0.2 nuclei/mm
2
. This particular graphene flake is near Cu 

edges, and it expends over the Cu grain boundaries easily. After seven hours, 

graphene flakes in this stage are dramatically bigger, with a size about 1 mm 

already. Also, the shape at this stage seems more hexagonal rather than dentritic. 

But on a closer look, we find the edge is still rough, and with dentritic branches, 

but the general shape is hexagonal. The nucleation density at this stage is also 

around 0.1~0.2 nuclei/mm
2
. After 11 hours, the size of flakes becomes nearly 2 mm, 

still we see no change in nucleation density, and the general shape of the flakes is 

also hexagonal.  

The fact that these SEM images taken at different growth stages show 

graphene flakes all with hexagonal shape, which might correspond to the graphene 

honeycomb lattice, and that the nucleation density doesn’t not change through 

hours of growth durations, allow us to believe that these graphene flakes might be 

Table 4.1: CVD conditions applied in the synthesis of large single-crystal 

graphene  

 Ref. # 

CH4 partial 

pressure 

Total 

pressure 

H2: CH4 Temperature 

Cu 

enclosure 

Surface 

oxygen  

Size of largest 

single crystals 

Growth 

duration 

Growth rate 

[2] 1 Pa 5 Pa 4 1035 ˚C ◯   0.4 mm 75 min  6 µm/min 

[3] 30 Pa 1.4 kPa 467 1077 ˚C     2.3 mm 125 min 18 µm/min 

[4] 1.2 Pa 10 Pa 100 1035 ˚C ◯   1.5 mm 6 hours 4 µm/min 

[5] 4.6 Pa 100 kPa 2174 1075 ˚C     1 mm 5 hours 3.3µm/min 

[6] 0.007 Pa 100 Pa 6000 1070 ˚C   ◯ 5 mm 48 hours 1.7µm/min 

[1] 21 Pa 100 kPa 2800 1050 ˚C   ◯  5.9 mm   

[7] 0.13 Pa 13.3 Pa 100 1035 ˚C ◯ ◯  10 mm 800 min 12.5µm/min 
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single-crystal, a fact that we will prove nest. Another point is that it seems the 

growth rate is increasing trough the CVD duration, although CVD conditions are 

the same.  

4.5.4 Results of higher total pressure 

So far, the discussion has been restricted to LPCVD, with a total reaction 

pressure of about 300 Pa. The benefit of LPCVD is mainly about lower partial 

pressure of carbon source, so that the formation of graphene films is more 

controllable. On the other hand, many literatures reported the growth of graphene 

using ambient pressure CVD (APCVD) process [87-89]. At first, the purpose of 

developing this ambient pressure CVD is mostly for economic reasons or 

manufacture benefits, such that an roll-to-roll production can be realized [90-91]. 

But since the development on the growth of single-crystal graphene is drawing 

more attention, another benefit of APCVD becomes very clear, and that is the 

suppression of Cu sublimation. With a much higher total pressure than that of 

LPCVD (typically, around 300 times higher), the partial pressure of Cu vapor is 

also very high at this high temperature condition, thus the evaporation of the Cu 

substrate is well refrained. A systematically study showed that the activation energy 

for graphene nucleation at APCVD is 9 eV, more than twice the activation energy 

for LPCVD (4 eV) [92]. For this reason, even with a high partial pressure of carbon 

source (i.e., a high concentration of surface adatoms), the nucleation density could 

still be very low. Besides this change in activation energy, in APCVD, it is possible 

to bring the reaction temperature even closer to the melting point of Cu. As 

explained in 4.3.2, with higher temperature, the etching effect is stronger, the 

graphene flakes become more crystalline, and the only reason that we do not apply 

a temperature higher than 1065 ˚C is that we fear the Cu foils would be consumed 

before necessary CVD duration is reached due to the strong Cu sublimation. But 

with APCVD, even with higher temperature (or else, with melted copper, as shown 

by [5]), the rate of losing Cu is still lower than LPCVD with lower temperature. I 

summarize some important papers for the growth of large single-crystal graphene 

in Table 2. Generally, with APCVD, a higher temperature and a higher H2: CH4 

ratio are applied, so that even with higher partial pressure of carbon sources, the 



 

 

Chapter 4 Synthesis of large single-crystal graphene 

 69 

nucleation density is still low, and the shape of graphene flakes are often perfect 

hexagonal with very smooth edges. 

In our study, although we believe with higher concentration of H2, the growth 

result could be much improved, for safety reasons, we still use the 3% H2 diluted in 

Ar. Figure 4.13 shows the evolution of graphene flakes dependent on the total 

pressure of the CVD system. Note that all other aspects in these experiments, such 

as the reaction temperature, the flow rate of each gas, the Cu enclosure and the 

oxidation procedure, remain the same as we used in LPCVD, but only the partial 

pressures of ethanol and H2 increase along with the total pressure. Not only the 

edges of graphene flakes become much smoother with higher total pressure, the 

growth speed increases dramatically as well. These smooth edges can only be 

explained in the way that with higher total pressure, the etching effect on the 

growth front of graphene flakes is much stronger, so the balance between growth 

and etching along the edges are more even. But it is still unclear if the main etching 

agent in this process is H2 or the decomposition products of ethanol. Although the 

general ratio of H2 is low in our experiments, but since we apply a super low flow 

of ethanol, the ratio of H2: EtOH is about 290, which is not very low compared 

with other groups parameters as shown in Table 4.1, so it is very possible that H2 is 

the main etching agent that helps to maintain this balance of etching/growth of 

 

Figure 4.13. SEM images of graphene flakes on Cu with different CVD total 

pressures. The values of pressures are marked under each SEM image. These three 

samples were grown at 1065 ˚C, with a 300 sccm flow of H2/Ar and a 0.031 scccm 

flow of ethanol, for 3 hours.  
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graphene flakes, same as the cases reported by other groups using methane as the 

carbon source. And along with the increase in total pressure, the partial pressure of 

H2 also increases dramatically, and the rate of etching obviously increases faster 

than that of growth. On the other hand, the decomposition products of ethanol, 

including H2O, O2, CO, etc., are also very strong etching reagents for graphene, 

which may also be mainly responsible for keeping this etching/growth balance 

instead of H2. At current stage, we lack sufficient evidence to prove which way is 

right. More experiment regarding this, such as the dependence on different H2 ratio, 

should be conducted to resolve this question. 

Another important feature form higher total pressure is that the general growth 

 

Figure 4.14. SEM images of graphene flakes on Cu grown at a total pressure of a),  

c) 300 Pa, and b), d) 17 kPa. Note that the growth duration for a) and c) was 7 

hours, and for b) and d) was 5 hours. These two samples are shown here for their 

similarity in edge-to-edge sizes. 
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rate of graphene flakes increases. As shown in Figure 4.13, with same CVD 

duration (3 hours), the edge-to-edge size of graphene flakes at 17 kPa is almost 

twice the size of graphene flakes grown at 300 Pa. There are two possible origins of 

this evolution: first, with a higher partial pressure of ethanol, the concentration of 

surface C adatoms increases, resulting in a higher rate of edge attachment around 

each graphene flakes; second, the CVD duration of these three samples shown in 

Figure 4.13 is relatively short. Initially, the growth rate of graphene flakes is very 

low, due to the existence of surface oxygen. As shown in Figure 4.12, in 2 hour 

duration, we can only observe some 100 µm flakes, but in 7 hours, the size of 

graphene flakes is close to 1 mm, with a growth rate of about 0.15 mm from 2 

hours to 7 hours, and it maintains the same rate from 7 hours to 11 hours. This 

could be explained in the way that after 2 hours, the oxygen on Cu surfaces are 

mostly reduced by H2, thus the growth speed increases after 2 hours. So the size 

difference shown in Figure 4.13 could be contributed by the fast reduction of Cu 

surfaces due to higher H2 concentration. Again, I am sorry to say that we still lack 

sufficient evidence to prove which is correct.  

We show large graphene flakes grown at 300 Pa and 17 kPa in Figure 4.14. 

With LPCVD, with enough growth duration, although the shape of large graphene 

single crystals is generally hexagonal, but the edges are very rough as shown in 

Figure 4.14-a. A higher magnification image (Figure 4.14-c) reveals that the corner 

of the hexagonal flake is very sharp, close to 60 ˚, much smaller than the value of 

a hexagonal-shape corner angle, 120 ˚, of which the possible reason has been 

explained in 4.4.2. On the other hand, even for larger graphene flakes, samples 

grown at 17 kPa still maintain a perfect hexagonal shape, with very smooth 

edges (Figure 4.14-b). A closer look at the corner also shows a nearly 120 ˚ 

angle, suggesting the good crystalline of this graphene flake. This result is 

consistent with the discussion above.   

In Figure 4.13 and Figure 4.14, we only increase the total pressure to 17 kPa, 

still much lower than the real atmospheric pressure, and this is because when we 

increase the pressure of ethanol in the ethanol tank, we have to heat it, thus 

condensation may occur along the tubes that guiding the ethanol vapor, so with our 

current setup, 17 kPa is the highest possible pressure. Still, this high –pressure 
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CVD seems promising enough for further exploration, which we would conduct in 

the near future. All the application and characterization results after this point are 

still based on LPCVD graphene. 

4.6 Prove of single-crystal nature by SEAD  

Merely the shape and the nucleation density of these graphene flakes are not 

enough in proving that these flakes are single-crystal. Here we apply the popular 

method of electron-diffraction pattern as the proof for single-crystal nature. 

Graphene flakes as large as several millimeters are transferred to TEM grids, and 

 

Figure 4.15. SAED patterns of graphene flake. b) – i) are SAED patterns of 8 

randomly picked locations on this graphene sample. Their approximate locations are 

marked with red circles in a). The approximate contours of this graphene flake and 

the TEM grid is also drawn in a). The maximum diversion of θ in b) – i) is 1.4˚  



 

 

Chapter 4 Synthesis of large single-crystal graphene 

 73 

using the Selected Area Electron Diffraction (SAED) function of TEM, we 

acquired the SAED patterns at random location on the graphene flake, as shown in 

Figure 4.15 and Figure 4.16.  

Figure 4.15 and Figure 4.16 show two different graphene flakes transferred to 

TEM grids. For each sample, 8 random locations on these graphene flakes are 

selected and SAED patterns are taken (Figure 4.15-a and Figure 4.16-a). The 

SAED patterns are shown in Figure 4.15 b-i and Figure 4.16-b to i. We chose the 

black bar as x axis, and the angle between one certain crystal direction and the x 

axis in each pattern (marked as θ in Figure 4.15 b and Figure 4.16 b) is measured. 

The maximum diversion of θ in Figure 4.15 is 1.4˚ and the maximum diversion of θ 

 

Figure 4.16. SAED patterns of another graphene flake. b) – i) are SAED patterns of 

8 randomly picked locations on this graphene sample. Their approximate locations 

are marked with red circles in a). The approximate contours of this graphene flake 

and the TEM grid is also drawn in a). The maximum diversion of θ in b) – i) is 1.7˚. 

sccm ethanol and 300 sccm H2/Ar, and 300 Pa total pressure. 
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in Figure 4.16 is 1.7˚. This mean that the orientation of graphene lattice changes 

less than 1.7˚ for locations with a distance as large as 2 mm, suggesting that these 

graphene flakes are indeed single-crystal. Since these two samples are randomly 

picked, and are the only two that we measured, and they are both single-crystal, so 

we have confidence that all of our graphene flakes synthesized in similar methods 

are single-crystal.    

4.7 Discussion about growth mechanism of graphene large 

single crystals  

Finally, we have enough evidences to discuss about the mechanism of the 

growth of graphene single crystals from ethanol. Mostly the detailed growth 

kinetics is the same as graphene growth from methane, but there are several points 

that are very different. The detailed mechanism is explained as follows: 

1. After oxidation in air for tens of minutes, there is an oxide layer on the Cu 

foil. For the fact that we lack reliable equipment for detection of oxidation 

level, we suspect that the color changing during the oxidation represents 

the rising of the ratio between O atoms and Cu atoms. In our case, Cu is 

still the dominant atom on the Cu foil surface, because if the ratio of O:Cu 

is 1:1, the color should be black as the compound CuO. Since we heat the 

Cu foil in Ar only, the surface oxygen is well reserved till ethanol and 

H2/Ar is introduced into the system to initiate the growth. 

2. When ethanol vapor is flowed into the reaction chamber, it immediately 

decomposes into products such as, C2H2, C2H4, H2O, CO, etc. These 

decomposition products are then adsorbed onto the Cu surface, and under 

the catalytic effect of cu, they further decompose into even smaller 

molecules, such as CO, C, CH, etc. These smaller decomposition produces 

would travel across the Cu surface due to surface diffusion, for the fact that 

C solubility in Cu is extremely low. [67] This process is exactly the same 

as the corresponding stage described in Chapter 3. 

3. Due to surface oxygen on Cu surface, the activity of Cu surface is reduced, 

thus, the nucleation of graphene is restrained. We are still not quite clear of 

what exactly happens here. Either, the catalytic activity of Cu is reduced, 
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and ethanol cannot decompose to small molecules, which are the main 

gradients for graphene synthesis; or, there are small C species diffused on 

Cu surface, but only without the activity of Cu, they cannot form into 

honeycomb sp
2
-bonded structures. This is the stage that we will continue to 

investigate.  

4. Although it becomes very difficult for nucleation on Cu surface due to 

existence of surface oxygen, by small possibilities, there are still nuclei on 

Cu surface with very low density. After the formation of some initial nuclei, 

new diffused carbon atoms are much more likely to be captured by 

graphene edges, rather than reaching super-saturation and forming new 

nuclei, for the fact that the reaction barrier for graphene edge growth is 

much lower [85]. Here, although lacking convincing evidence, we have to 

believe that despite of surface oxygen, the diffusion length of C species on 

Cu/CuO surface is still very high, in order that these very discrete nuclei 

can capture C atoms and expand at this stage.  

5. The role of H2 in this reaction is very interesting. Because of the relatively 

low partial pressure of H2 that we use in our experiments, we believe that 

the etching effect of H2 is not a major one here. Another reason for this is 

 

Figure 4.17. Schematics of the growth mechanism. Processes explained here happen 

simultaneously in the CVD reaction. The forms of ethanol decomposition products 

are only possible structures, more complex C species (CxHy) could also be generated 

under the catalytic effect of Cu and diffused on Cu surface to be involved in the 

growth of graphene. 
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that as explained in 4.5.2, by raising the partial pressure a little (0.03 Pa to 

0.04 Pa), the shape of graphene flakes becomes very dentritic, indicating 

severe insufficient etching effect, but the partial pressure of H2 is not 

changed (9 Pa). So we believe that the main function of H2 in this reaction 

is to reduce the Cu surface. Surface oxygen can also exhibit strong etch 

effect, due to their high concentration initially in stage 3. This would 

severely reduce the growth rate of graphene growth, which is the reason 

that we only observe graphene flakes of less than 0.1 mm in 2-hour CVD 

duration (Figure 4.12 a). This growth rate is too low, and we would need 

several days in order to grow millimeter size graphene flakes. But for the 

reduction effect of H2, the concentration of O on Cu surface is gradually 

reduced, and the etching effect of O becomes small, so the growth rate 

increases dramatically. As a result, we observe an increase in size of 1 mm 

for duration of 5 hours (Figure 4.12 a, b). But there are still some oxygen 

atoms that dissolved into Cu foil, and they are not reduced by H2, and 

would precipitate to the surface to act as etchant. Still, the general etching 

effect that comes from either H2 or O is very low, considering the 

diffusion-limited growth behavior and the armchair edges of our graphene 

flakes.  

The 5 processes described above are the main growth mechanism for our CVD 

growth of graphene large single-crystals from ethanol precursor. In short words, 

they can be summarized as decomposition, surface diffusion, nucleation, growth 

and etching, and reduction. The schematic of these processes is shown in Figure 

4.17.  

4.8 Application: graphene/n-Si solar cells 

For its transparency (about 97% for 550 nm wavelength) and good conductivity, 

graphene is considered to be a wonderful candidate for the application of 

transparent electrodes, especially for photovoltaic devices. The first generation 

solar cells based on heterojunction has been a major solar energy harvest technique 

in the past few decades. And for the sake of environment preservation and 

economical benefits, heterojunction solar cell based on new materials, especially 
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new nano-carbon materials. Recently, heterojunction solar cell using SWNT 

[93-97] or graphene [98-106] electrodes have produced exiting results, but their 

general performances are still far from theoretical value. One big problem with 

graphene-based heterojunction solar cell is that the size of this heterojunction is 

about 3 mm × 3 mm, which is nearly 2 orders larger than former single-crystal 

graphene flakes, thus the conductivity of graphene film is much decreased by the 

existence of grain boundaries. Here we fabricate graphene/n-Si Schottky junction 

solar cell to demonstrate the supreme improvement of power conversion efficiency 

(PCE) brought by the large single-crystal solar cell.  

A typical schematic of graphene/Si heterojunction solar cells is shown in Figure 

4.18. Graphene and n-type Si act as electrodes of a diode, and at the small contact 

window located at the center of the solar-cell chip, graphene and the n-type silicon 

form a heterojunction. When light hits this contact window, exited electrons would 

initiate a current. The fabrication process of such structure is as follows:  

First, lightly doped n-type silicon wafer is cut into small pieces with the size of 5 

mm × 5 mm each, and they are rinsed in concentrated NaOH solution to remove 

the oxide layer.  

Second, after the removal of oxide layer, a piece of scotch tape with a size of 3 

mm × 3mm is stuck at the center on one side of each silicon piece, and a 50 nm 

SiO2 layer and a 50 nm Pt layer are deposited on the same side sequentially to 

serve as isolator and electrode. The other side of the chip is deposited with a 10 nm 

 

 

Figure 4.18. Schematic of graphene-Si solar cell 
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thick Ti layer and a 50 nm thick Pt layer, which act as the opposite electrode.  

Third, after the deposition of electrodes, the small scotch tape is removed, and 

the whole chip is cleaned thoroughly with acetone, IPA, and DI water. Afterwards, 

graphene is transferred to completely cover the contact window as shown in Figure 

4.19, using a wet-etching procedure as explained in 3.2.1.  

The fabricated solar cell must be left in air to dry for at least 24 hours before 

testing. The PCE is the most important value for demonstration of the quality of the 

solar cell. Figure 4.19 shows the IV curves of the solar cells fabricated with 

poly-crystal graphene and single-crystal graphene. The poly-crystal graphene is 

synthesized using the CVD procedure as proposed in Chapter 3. Based on the I-V 

curves, the PCE and fill factor (FF) are calculated. The PCE of poly-crystal 

 

 

Figure 4.19. J-V curves of graphene/n-Si solar cells 
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graphene/n-Si solar cell is about 1.50%, which is close to the value that has been 

reported before. Meanwhile, the PCE of single-crystal graphene/n-Si solar cell is 

5.14%, which is the highest value for pristine (undoped) graphene so far. The FF 

also improved from 21 % to 40 % when adopting the single-crystal graphene.  

The PCE for Schottky junction solar cells is mainly affected by three factors: the 

electrical conductance of graphene, the optical transparency of graphene, and the 

contact between graphene and metal electrodes. Since the transmittances of both 

poly-crystal graphene and single-crystal graphene for 550 nm light are about 97%, 

and the basic solar cell structures are the same, this big improvement in both the 

PCE and the FF can only be explained as the result of increase in conductance by 

the absence of graphene grain boundaries in single-crystal graphene. Typically, the 

conductance can be measured by the 4-point method, but unfortunately we have not 

conducted this measurement yet.  

The performance of graphene/Si solar cells can be easily improved by chemical 

doping (such as doping with HNO3, as shown by E. Shi et al. [100]), or by adding 

the layer number of graphene (disoriented 4-layer graphene is believed to possess 

both the benefits of high transmittance and high conductivity). Since currently we 

have shown the best performance of pristine graphene/Si solar cells, we believe it 

is the most potential application for large single-crystal graphene, and the 

experiments to enhance the performances shall be conducted shortly.   

4.9 Summary 

  The work described in this chapter is my main contribution as a doctoral 

candidate. Here, we propose and investigate several key processes for increasing 

the size of graphene flakes using ethanol as CVD precursor, including heating 

without H2, extremely small flow rate (0.03 sccm), and pre-oxidation. The 

influence of each CVD parameter is carefully investigated, including flow rate and 

partial pressure of carbon source, reaction temperature, CVD duration, and 

oxidation level. These systematic studies give us a good insight on how to control 

the growth behavior, and provide us evidence for demonstrating a growth 

mechanism that emphasizes the role of oxygen in controlling the nucleation density. 

Raman maps and SAED observation helped us to understand the quality and 
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morphology of graphene flakes, and we are proudly proclaim that we grow 

single-crystal graphene flakes with relatively easy procedure, and the size of our 

biggest graphene single-crystal sample is 5 mm (Figure 4.20), which is one of the 

biggest individual hexagonal-shaped graphene single crystals currently.   

Besides, the proposed mechanism based on experiment evidences would create 

an enlightening prospect for the possible realization of wafer-scale single-crystal 

graphene in the future.  

 

 

Figure 4.20. Photograph of 5mm graphene single crystals on Cu foil. 

Graphene/Cu foil is heated in air at 180˚C for 5 minutes to oxidize the Cu 

surface that is not covered by graphene, in order to create contrast. This 

method is first reported in [1].  



 

Chapter 5 

Closing Remarks 

5.1 Summary of this thesis 

  The research in this Ph. D thesis includes many improvements in the synthesis of 

graphene on transition metals using ethanol as carbon source. Especially, since 

almost all the other groups that conducting CVD growth of graphene are applying 

methane as carbon source, following the successful initial trials by K. Kim et al. 

[32] and X. Li et al. [33], we proved that another carbon source, ethanol, are 

equally capable in the synthesis of high-quality graphene, and might bring 

procedure simplicity. This opens a brand new road to the synthesis of wafer-scale 

graphene single crystals. Ethanol can be an economic and safe alternative for 

graphene synthesis in future industrial manufacture. 

    After a brief introduction on the structure, the properties, and the early 

synthesis methods of graphene in Chapter 1, the ACCVD method, including the 

equipments and basic principles, is explained in Chapter 2. Especially, Raman 

spectroscopy, the most powerful tool in detection of the quality and numbers of 

layer of graphene, is introduced in detail. Some preliminary work using Ni 

substrates is shown in this chapter. We successfully synthesized graphene with low 

defect level on Ni surfaces, and by carbon-isotope labeling we proved that the 

growth is a surface mediated process, rather than a dissolving-and-precipitation 

process as conventionally believed. But the control over numbers of layers of the 

resultant graphene is not ideal, despite our effort on tuning the CVD conditions, 

due to the fact that the dissolving-and-precipitation process still exists as a miner 

process for the high solubility of carbon in Ni.  

In Chapter 3, the CVD growth of graphene on Cu substrates using ethanol as 

carbon source is discussed. With optimized conditions, we were able to synthesize 
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large-scale single-layer homogeneous graphene films on Cu foils. Small Raman D 

bands at random locations indicate the low defect level. With parametric study, we 

show that the formation of bi-layer and multi-layer graphene can be restrained be 

lowering the CVD reaction pressure. To solve the problem of high-temperature 

etching, we utilized Cu pockets. By Cu pockets and raising growth temperature, 

graphene with higher quality, i.e., fewer contamination, bigger graphene domain 

size, more dominant single layer, is synthesized. Furthermore, we found the growth 

can be self-limited, giving us a much bigger CVD-duration window and thus better 

control of the good quality of single-layer graphene. Based on the observations, we 

propose the mechanism of a diffusion-limited growth procedure to explain 

graphene growth on Cu from ethanol.  

To further improve the quality of graphene films, especially the grain size of 

single-crystal graphene, methods including extremely small ethanol flow, heating 

without hydrogen are explored. Finally, we realized the importance of surface 

oxygen in reducing the nucleation density of graphene on Cu foils, and utilizing 

this advantage, 5 mm single-crystal graphene is synthesized. A complete 

mechanism model is proposed to explain the detailed procedure of the nucleation 

and growth of graphene flakes. Furthermore, graphene/n-Si solar cells are 

fabricated, and the preliminary results of them are very promising, which is 

considered a major prospect of this thesis.  

5.2 Objective fulfillment 

The objective of this thesis as proposed in 1.5 is to investigate of mechanism of 

graphene growth on metal surfaces and to grow high-quality graphene using 

ethanol as the precursor. 

For the first objective, a series of isotope labeling experiments were conducted 

on Ni substrates, and the adsorption growth model was proposed based on these 

results. For Cu substrates, influence of wide CVD parameter ranges was explored, 

and based on the systematic study, the detail procedure of nucleation and expansion 
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of graphene flakes were explained.  

For the second objective, 5 mm single-crystal graphene flakes are synthesized. 

Their single-crystal nature has been confirmed by SAED patterns. Scanning Raman 

shows that graphene flakes are uniform, with very low D-band across the whole 

film. The electrical property of the large single-crystal graphene film is 

demonstrated by its application in graphene/Si solar cells, and the good 

performance of these solar cell compared with the ones formed by poly-crystal 

graphene shows great improvement on conductance..  

5.3 Prospects 

Although a 5 mm single-crystal graphene film is already supreme compared with 

the growth results from merely two years ago, wafer-size single-crystal graphene by 

simple CVD method on Cu substrates is yet to be realized. Techniques to further 

decrease the nucleation density and increase the growth speed is required, such as 

seeded growth, two-step growth, and a more detailed optimization on the surface 

oxygen. Since it has become very clear that surface oxygen can directly and 

efficiently refrain the nucleation, it is entirely possible to control the location and 

the occasion of the nucleation by manipulating the morphology of the surface 

oxygen and the oxygen inside the Cu foil. 

  Second, for graphene films grown on metal substrates, a transfer procedure is 

necessary for the applications, and graphene is more or less damaged in this process 

either by wet-etching or mechanical force. So we think a very important work for the 

next step could be the direct growth of graphene on dielectric materials, such as SiO2. 

Since it has been proved that graphene grown on Cu is not epitaxial and Cu is barely 

involved in the attachment of C atoms onto graphene edges, the metal substrates may 

not be necessary after the nucleation stage. Transfer free growth on dielectric 

materials could be realized using a similar method of the cloning of single-walled 

carbon nanotubes.  

Third, with involvement of surface oxygen, the nucleation and growth processes 

of graphene flakes become more complex, and the mechanism behind this is still 

unclear.  Further investigation involving evolved characterization technique is 

required. For instance, an in-situ Raman observation of these two processes could 
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greatly help to understand the role of oxygen on reducing the nucleation density and 

increasing the growth speed. 

Forth, the application of large single-crystal graphene is the major challenge for 

the research of this material. For FET devices, the synthesis of AB-stacked 

double-layer graphene is required, for the natural band gap possessed by it. 

Double-layer graphene has been reported to be successfully synthesized with small 

grain size [62, 107-113], and the biggest single-crystal double-layer graphene 

reported is about 200 µm [6]. We believe with our experience and skill in the 

synthesis of large single-crystal graphene, the size of single-crystal double-layer 

graphene can also be improved, which is critical for future large-scale FET 

applications, for its supreme homogeneity. Another major application is the 

transparent electrode for solar cells, as mentioned in 4.8. After improving the 

performance of graphene/Si solar cells, other types of solar cell including polymer 

solar cells can also be fabricated using graphene electrode.  
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