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ABSTRACT 
We report a non-equilibrium molecular dynamics (MD) 

study on heat conduction of finite-length single-walled carbon 
nanotubes (SWNTs). The length and diameter dependences of 
the thermal conductivity are quantified for a range of nanotube-
lengths up to a micrometer at room temperature using two 
different temperature control techniques. A thorough 
investigation was carried out on the influence of intrinsic 
thermal boundary resistance between the temperature-
controlled layers and the rest of the SWNT. The trend of length 
effect indicates a gradual transition from nearly pure ballistic 
phonon transport to diffusive-ballistic phonon transport. The 
nearly pure ballistic phonon transport was also confirmed by 
the minor diameter-dependence of thermal conductivity for 
short SWNTs. For longer SWNTs with stronger diffusive 
effect, the thermal conductivity is larger for SWNTs with 
smaller diameters. 

INTRODUCTION 
The ever-expanding expectations for single-walled carbon 

nanotubes (SWNTs) include applications for various electrical 
and thermal devices due to their unique electrical and thermal 
properties [1]. SWNTs are expected to possess high thermal 
conductivity due to their strong carbon bonds and the quasi-
one-dimensional structure [2]. On considering the actual 
applications, one of the essential tasks is to characterize the 
thermal properties not only for thermal devices but also for 
electrical devices since they determine the affordable amount of 
electrical current through the system.  

With advances in SWNT synthesis and MEMS techniques, 
thermal conductivity (or thermal conductance) measurements 
of individual SWNTs have been recently reported [3, 4]. 
Measurements were made for 2.76-μm-long SWNT suspended 

across a gap between two thermal reservoirs and thermal 
conductance of 4 nW/K was obtained at room temperature [3]. 
Later, thermal conductivity of a 2.6-μm-long individual 
suspended SWNT with diameter of about 1.7 nm was extracted 
from I-V electrical characteristics to be about 3500 W/m K at 
room temperature. The value is similar to those of individual 
multi-walled carbon nanotubes [5, 6] and about an order of 
magnitude larger than that of bulk carbon nanotubes in forms 
of mats and bundles [7]. Experiments with temperature 
variation suggest that the thermal conductivity (or conductance) 
increases with temperature in temperature range between 110 K 
and 300 K [3] and it decreases in temperature range between 
300 K and 800 K [4]. These observations suggest a critical 
temperature (~300 K) above which Umklapp scattering 
becomes important. 

The thermal property measurements of SWNTs mentioned 
above are extremely challenging as there are potential 
uncertainties residing in the technicality for instance related to 
the contact resistances between thermal reservoirs and an 
SWNT. Therefore, the demands for reliable theories and 
numerical simulations are greater than ever for validations of 
the experimental results and for investigation of detail heat-
conduction characteristics that are not accessible in 
experiments. One of such heat conduction characteristics with 
practical importance is the size dependence of thermal 
conductivity. In general, the size-dependence of the thermal 
conductivity appears when the system characteristic length is 
smaller or comparable to the phonon mean free path [8]. For 
SWNTs, due to the expected long phonon mean free path, the 
regime of the length effect stretches beyond the realistic length 
in many applications. The length effect has been demonstrated 
using MD simulations [9, 10] and the power-law divergence 
was discussed with analogy to the convectional one-
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dimensional models [11]. More recently, the length effect was 
investigated up to fully diffusive phonon transport regime using 
a kinetic approach [12], where the divergence was shown to 
disappear with presence of the second order (or higher) 3-
phonon scattering processes. The issue of the transition from 
the pure ballistic to diffusive-ballistic phonon transport was 
discussed by Wang and Wang [13] by modeling the energy 
transmission based on the ratio of the overall average phonon 
mean free path to L. 

In this study, we aim to investigate phonon transport in 
SWNTs for a range of SWNT lengths by performing non-
equilibrium MD simulations at room temperature. MD 
simulations are capable of handling phonon transport for all the 
phonon branches, unlike the kinetic approach with relaxation 
approximations [12]. As shown later, this aspect is important 
for SWNTs with significant ballistic phonon transport, 
especially at room temperature where a wide range of phonon 
branches is populated. 

 

NOMENCLATURE 
A= nanotube cross-sectional area 
Ac-c= interatomic distance 
a= unit cell thickness 
B*= many body term 
Eb= binding energy 
E = phonon energy spectrum 
K= thermal conductance 
k= wave number 
L= nanotube length 
Lc= thermostat length 
N= number of unit cells 
n= number of atoms per unit cell 
q= heat flux 
rij = distance between atom i and j 
VA = attractive term 
VR = repulsive term 
 
Greek Symbols 
α= cylindrical coordinates 
ΔT= temperature drop 
λ= thermal conductivity 
ω= frequency 
τ= relaxation time 
 
Subscripts 
P= phatom thermostat 
NH= Nose-Hoover thermostat 

CLASSICAL MOLECULAR DYNAMICS 
The Molecular Dynamics Potential Function 

In current MD simulations, the carbon-carbon interactions 
were modeled using Brenner potential [14] in a simplified form 
[15] where the total potential energy of the system is expressed 
as, 

[ ]∑ ∑
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Here, VR(r) and VA(r) are repulsive and attractive force terms, 
which take a Morse type form with a certain cut-off function. 
B*

ij represents the effect of the bonding order parameters. As 
for the potential parameters, we employ the set that was shown 
to reproduce the force constant better (Table 2 in [14]). The 
velocity Verlet method was adopted to integrate the equation of 
motion with the time step of 0.5 fs. 

The application of classical approach is encouraged by the 
expected dominant contribution on the heat conduction from 
phonons compared with that from electrons [16]. While the 
electric thermal conductance for semi-conducting SWNTs is 
expected to be negligible, contribution of electric thermal 
conductance in metallic SWNTs has been calculated to be 
minor (~10%) at room temperature [17]. 

 
Dispersion Relations 

On simulating ballistic phonon transport using MD 
simulations, linear transport properties need to be reproduced 
with sufficient accuracy. This needs to be satisfied for phonons 
with a wide range of frequencies as their ballistic transport 
becomes important for the short SWNTs at room temperature. 
Linear phonon transport properties can be visualized by the 
dispersion relations, which can be computed from MD 
simulations by taking the two-dimensional Fourier spectra of 
the time history of the one-dimensional velocity field along an 
SWNT. Here, the spectra for a 25 nm (10, 10)-SWNT with the 
periodic boundary is presented. The energy spectra are 
computed as, 
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where N and n are the number of atoms in the longitudinal (z) 
direction (the number of unit cells in the nanotube) and number 
of atoms in a unit cell, respectively. The velocity vector is 
projected to the local cylindrical coordinates ( zr ,,φ ) denoted 
by the subscript α in equation (2). The energy density was 
firstly computed for each directional component then summed 
to obtain the overall dispersion relation shown in Fig. 1. Here, 
k-space is normalized by the width of the Brillouin-zone of the 
SWNT, aπ , where a is the thickness of a unit cell. In the 
current case with an armchair SWNT, a unit cell is an armchair-
shaped monolayer hence a= ccA −3 , where  is the 
interatomic distance. The data are discrete due to the finite 
length of the nanotube and the broadening of the spectral peaks 
indicates the phonon scattering. The overall feature of 
dispersion relations obtained from MD simulations agrees with 
the reported theoretical models [1, 18], especially well with the 
mechanical model of Mahan and Jeon [18].  

ccA −
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Figure 2. INFLUENCE OF THE LENGTH OF THE LAYERS 
CONTROLLED BY NOSE-HOOVER THERMOSTAT (LC) 
ON THE TEMPERATURE PROFILE (L=25 nm). 
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Figure 1. (10, 10)-SWNT PHONON DISPERSION 
RELATIONS. WAVE NUMBER k IS NORMALIZED 
WITH THE LENGTH OF BRILLOUIN ZONE. 

Note, for SWNTs, as the number of phonon branches is 
determined by the number of atoms in a unit-cell, even 
armchair SWNTs whose unit-cell contains fewer atoms than the 
other structures (chiral and zigzag) with similar diameters, the 
dispersion relation depicts diverse phonon branches, as seen in 
Fig. 1 for a (10, 10)-SWNT. There are optical phonon modes 
with small circumferential wave number and low frequency 
that have similar dispersion characteristics and heat capacity to 
the acoustic ones, especially in the intermediate wavevector (k) 
regime. Although, acoustic modes are still expected to posses 
the longest mean free path, the contribution of these optical 
modes is expected to become important when their mean free 
paths are comparable to L.  

 

RESULTS AND DISCUSSIONS 
Thermal Conductivity Calculations 

Thermal conductivity λ of an SWNT was measured with 
non-equilibrium MD simulations. After reaching an isothermal 
state at 300 K with the auxiliary velocity scaling control, the 
temperature controlled layers on both ends of the SWNT were 
activated to apply a temperature difference of 20 K. Eventually 
the temperature profile converges to a stationary state with 
quasi-linear gradient. The simulation time ranges within 3-18 
ns as the data-convergence time depends on the system size and 
temperature control methods. By calculating the heat flux along 
the tube from the energy budgets of the thermostats, λ was 
calculated through the Fourier's law dzdTq λ−= . The cross-
sectional area A of a nanotube was defined using the ring of 
van der Waals thickness πbd, where b=0.34 nm is van der 
Waals thickness. The usage of thermal conductivity to express 
the heat conduction of the current system is arguable due the 
extensive ballistic heat transport. Furthermore, the definition of 
the area of an isolated SWNT is rather trivial. Although simply 

expressing the heat conduction with thermal conductance may 
be more suitable, here we use thermal conductivity for the sake 
of comparison with previous studies. 

 
Influence of Thermostats 

On carrying out non-equilibrium MD simulations by 
applying thermostats to nanotube-ends of an SWNT, the 
interface between the temperature-controlled part and the rest 
of the SWNT typically gives rise to a thermal boundary 
resistance (TBR) [9, 10]. A TBR appears due to mismatching of 
lattice-vibrational spectra of the temperature controlled part and 
the rest of the nanotube. The mismatching causes reflection of 
phonons and alters scattering dynamics at the interface. Since a 
TBR is expected to influence the local non-equilibrium phonon 
distribution and hence alter the thermal conduction, thermostats 
and their parameters need to be carefully selected to minimize 
the TBR. In this study, in addition to the phantom technique 
used in the earlier works [9, 10], we adopt a standard 
temperature control method using Nose-Hoover (NH) 
thermostats [19, 20].  

It is important to state that the TBR effect is not entirely a 
numerical artifact. In practical use of the lateral heat 
conduction of SWNTs to promote heat transfer, finite-length 
SWNTs would be bounded with connections to other materials. 
In this case, the heat conduction properties would be inevitably 
altered by TBRs at the connections. Therefore, in fact, it would 
be more realistic to examine the heat conduction of SWNTs 
with presence of such interfacial thermal resistance, though 
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Figure 4. INFLUENCE OF THE RELAXATION TIME OF 
NOSE-HOOVER THERMOSTAT τ ON THE SUM OF TBRS 
ON THE HOT AND COLD SIDES FOR DIFFERENT VALUES 
OF L (LC= 0.5L). THE DASHED LINE MARKS τ=40 ps. 

formulation of a general case would be difficult since such 
effects would be strongly case-dependent. In the current study, 
for the sake of comparison with other reported theoretical 
works and focusing on studying the intrinsic dynamics, we aim 
to construct an ideal case by minimizing the TBR effect. 

Firstly, we carried out thermal conductivity measurements 
by adopting the phantom technique used in the previous works 
[9, 10]. Here, a phantom thermostat consists of a fixed layer 
and a phantom layer, which are both monolayer unit-cells. Note 
a unit-cell is an armchair-shaped monolayer in the current case 
of armchair SWNTs. The phantom layer is placed between the 
fixed layer (nanotube-end) and the rest of the SWNT and 
control by the Langevin equation. Debye temperature of 
diamond was chosen as the damping parameter of the Langevin 
equation. The formulation aims to damp the phonons traveling 
into the phantom layer and hence to prevent the phonons from 
being reflected at the tube ends. Therefore, ideally, a phantom 
thermostat models isothermal layers with sufficient length.  

The simulations using the phantom technique was 
validated by performing an additional set of simulations 
adopting a standard application of Nose-Hoover (NH) 
thermostats. A straightforward application of thermostat 
without any virtual dynamics makes the method simple and 
robust, though it is more expensive than the previous method. 
The thermostats have two tuning parameters; the length of the 
temperature controlled Lc and the relaxation time τ. Fig. 2 
shows the temperature profiles obtained by using the NH 
thermostat for various values of Lc, where distinct TBRs can be 

observed as temperature jumps. For instance, in the case of 
Lc=0.01L, temperature jumps at the interfaces account for about 
50% of the total temperature difference applied at both tube-
ends.  

Figure 3. INFLUENCE OF LC/L AND RELAXATION TIME 
OF NOSE-HOOVER THERMOSTAT ON THE AXIAL 
TEMPERATURE GRADIENT dT/dz, HEAT FLUX 
THROUGH THE SYSTEM Q AND THERMAL 
CONDUCTIVITY λ. L=25 nm. 

In order to minimize the TBRs, parameters Lc and τ were 
tuned. Influences of Lc and τ on the key thermal properties are 
described in Fig. 2-4. Elongation of Lc permits larger 
wavelength phonon modes and hence attenuates the 
discrepancy of phonon spectra between temperature-controlled 
part and the rest of the nanotube. This can be seen in the Lc-
dependence of temperature profiles (Fig. 2), where the shorter 
Lc is, the larger TBRs are. More detail views are given in Fig. 
3(a-c) which show Lc-dependences of the temperature gradient, 
heat flux and thermal conductivity. Both the temperature 
gradient and heat flux increased with Lc and eventually 
saturated at the upper limit Lc/L~1, independently of τ. The 
corresponding trend of λ is similar except for the value for 
Lc/L=0.01. Therefore, considering the computational cost, we 
approved Lc =0.5L as an optimal value.  

As for the relaxation time, longer τ is expected to give the 
temperature-controlled layers more time to adjust the spectrum 
to that of the rest of the SWNT. The variation of TBRs with 
respect to τ is shown in Fig. 4 for Lc =0.5L. The figure shows 
the sum of TBRs on the hot and cold sides R for various 
nanotube lengths, within the parameter bounds (40 fs<τ<4 ns) 
beyond which the quasi-linear temperature profile is 
significantly disturbed. Beyond the lower bound, the phonon 
spectra of temperature-controlled layers and the rest of the 
SWNT were found to exhibit severe mismatching. On the other 
hand, beyond the upper bound, the data hardly converged. The 
figure shows that R takes a minimum value for a critical 
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 Figure 5. LENGTH DEPENDENCE OF THERMAL 
CONDUCTANCE K OF (5, 5) SWNTs. SUPERSCRIPT T 
DENOTES THE VALUE FOR THE ENTIRE SYSTEM 
INCLUDING TBRs. SUBSCRIPTS P AND NH INDICATES 
THE VALUES COMPUTED USING THE PHANTOM 
TECHNIQUE AND NOSE-HOOVER THERMOSTATS, 
RESPECTIVELY. 

relaxation time τcr. On varying L from 25 nm to 201 nm, τcr 
exhibits a moderate variation between 400 fs and 40 ps. On 
considering the general trend where τcr increases with L, we 
take τ=40 ps as the optimal value. Note that an order difference 
in τ may result in approximately 10% difference in thermal 
conductivity.  

In Fig. 5, the impact of the extent of TBRs on the heat 
conduction is summarized by plotting the thermal conductance 
K=qA/ΔT for (5, 5) SWNTs with lengths. In the figure, 
subscripts P and NH denote the values obtained by phantom 
techniques and NH thermostats. The open marks are the values 
calculated by taking the intrinsic temperature drop of SWNTs. 
The filled marks represent the total thermal conductance 
calculated based on the total temperature drop (ΔT=20 K) 
including the temperature jumps at the interfaces due to TBRs. 
Therefore, the differences between the open marks and the 
corresponding filled marks account for the influence of the 
TBRs. The magnitude of TBR for the phantom technique is 
evidently more than that for the case with NH thermostats. 
However, difference between the intrinsic thermal conductance 
Kp and KNH is minute. This indicates that the influence of the 
interfaces on the heat conduction cannot be understood solely 
by the magnitude of TBRs. The TBR effect decreases with L 
for both methods since the intrinsic thermal resistance of 
SWNT increases with L. It can be seen that the impact of TBRs 
on the thermal conductance is minor at the long nanotube 
limits.  
 
Length Effect on SWNT Thermal Conductivity 

In Fig. 6, thermal conductivity of (5, 5) SWNTs calculated 
using phantom technique (λP) and NH thermostats (λNH) are 
marked with circles and asterisks, respectively. Parameters of 
NH thermostats are Lc=0.5L and τ=40 ps as discussed earlier. 
As mentioned above in terms of thermal conductance, despite 
the differences in temperature control techniques and intensity 
of the TBRs, differences between λP and λNH were minor in the 
examined range of L.  

Now, let us study the general trend of the length 
dependence of SWNT thermal conductivity. The overall trend 
of the slope (∂λ/∂L) clearly indicates the gradual transition from 
nearly pure ballistic to diffusive-ballistic phonon transport. 
When all the phonons experience ballistic phonon transport, λ 
is proportional to L (constant thermal conductance). The 
asymptotic match of the data to L∝λ (dashed line) suggests 
nearly pure ballistic phonon transport at the short SWNT limit. 
Note, on considering the significant phonon population in the a 
wide range of phonon branches at room temperature, we expect 
contributions on the heat conduction not only from ballistic 
transport of acoustic phonon modes but also from that of 
various optical phonon modes in the small L regime. This is 
consistent with the results of MD realization of Non-Fourier 
heat conduction in tens of nanometers long SWNTs, where the 
ballistic transport of collective optical phonons was observed to 
play an important role [21]. The gradient ∂λ/∂L gradually 
decreases as L increases since phonon mean free paths 

Figure 6. LENGTH AND DIAMETER DEPENDENCES OF 
SWNT THERMAL CONDUCTIVITY. SUBSCRIPTS P AND 
NH INDICATE THE VALUES COMPUTED USING THE 
PHANTOM TECHNIQUE AND NOSE-HOOVER 
THERMOSTATS, RESPECTIVELY. DASHED LINE IS L∝λ  
TO INDICATE THE SLOPE IN CASE OF PURE BALLISTIC 
PHONON TRANSPORT. THE FITTING ERROR BARS ARE 
DRAWN ONLY FOR THE CASE OF (3, 3) SWNTs, WHICH 
EXHIBITED THE LARGEST ERROR AMONG ALL THE 
CASES. 
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gradually become shorter relatively to L i.e. diffusive phonon 
transport is gradually enhanced with respect to ballistic phonon 
transport. The positive gradient at the upper bound indicates 
that the limit of the ballistic phonon transport exceeds a 
micrometer. 
 
Diameter Effect on SWNT Thermal Conductivity 

Fig. 6 shows diffusive-ballistic thermal conductivity for (3, 
3), (5, 5) and (10, 10) SWNTs. For small L, where the phonon 
transport is almost purely ballistic, the thermal conductivity 
exhibits minor dependence on the diameter. The diameter-
independence for small L confirms the above-discussed 
ballistic phonon transport in this regime. At the ballistic phonon 
transport limit, where all the populated phonons experience 
ballistic transport, thermal conductance is proportional to the 
number of atoms per unit cell, i.e. the diameter if we ignore the 
variation of the linear phonon transport property (dispersion 
relations) due to the change in curvature. This means, with the 
current definition of A, that the thermal conductivity is 
independent of the diameter. 

As L increases, the diameter dependence becomes 
noticeable. As seen in Fig. 6, thermal conductivity profiles of 
SWNTs with three different chiralities (diameters) deviate 
beyond L~100 nm. Here, we assume that the choice of 
temperature control method has minor influence on the 
calculated values of thermal conductivity. Current results show 
that, in the diffusive-ballistic regime, thermal conductivity is 
larger for SWNTs with smaller diameters, which suggests that 
the intensity and/or frequency of nonlinear phonon collisions 
decrease as the diameter decreases i.e. the system becomes 
closer to one-dimensional structure. 

 

CONCLUSIONS 
Non-equilibrium MD simulations were conducted to 

investigate the SWNT heat conduction at room temperature in 
terms of phonon transport. Imposition of a temperature gradient 
on an SWNT using thermostats typically gives rise to thermal 
resistances at the boundaries between temperature-controlled 
layers and the rest of the nanotube, which alter the heat 
conduction characteristics. By tuning the thermostats to 
minimize the thermal boundary effect, the length and diameter 
effects on the thermal conductivity were quantified in a range 
of L and for three different diameters. The gradual transition 
from nearly pure ballistic phonon transport to diffusive-ballistic 
phonon transport was clearly observed. In the small L regime 
with strong ballistic transport, there is a significant contribution 
on the heat conduction from a wide range of optical phonons. 
Corresponding picture of ballistic phonon transport with active 
role of optical phonons was obtained from the diameter 
dependence where λ is d-invariant for small L. In the length 
regime with non-trivial diffusive phonon transport, the 
diffusion effect due to the phonon collisions is larger for 
SWNTs with smaller diameter. 
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