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Abstract 
Heat transfer of single-walled carbon nanotubes (SWNTs) in practical situations is 
investigated using molecular dynamics (MD) simulations. Attenuation of the 
expected high thermal conductivity was simulated by mixing 13C isotope impurities 
to SWNTs or binding two SWNTs with different chirality with a junction structure 
in between. The heat transfer through the junction can be expressed with the 
thermal boundary conductance by considering a virtual boundary at the junction. 
The lateral heat conduction was compared with the thermal boundary conductance 
at the interfaces between an SWNT and surrounding materials. By applying the 
lumped capacity method on the non-stationary molecular dynamics simulations, the 
thermal boundary conductance of an SWNT bundle and an SWNT confining water 
were calculated. Finally, some conventional properties were estimated to 
characterize the anisotropic heat conduction.  
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1. Introduction 

Single-walled carbon nanotubes (SWNTs) [1] have remarkable electrical, optical, 
mechanical and thermal properties [2, 3]. On investigating the thermal properties of SWNTs, 
the classical molecular dynamics (MD) simulations serve as strong tools since the heat 
transfer is mainly governed by phonon transport. Utilizing MD simulations, much of the 
recent attention has been paid to the lateral thermal conduction which is expected to be 
extremely high [4]. Furthermore, the thermal conductivity shows strong dependence on the 
nanotube length for realistic length scale in the device applications [5, 6]. 

Despite the expected high thermal conductivity of pure and defect-free SWNTs, in 
practical situations, SWNTs may contain some impurities and defects which enhance the 
phonon scattering hence attenuate the heat conduction. One apparent example of impurities 
in SWNTs would be the carbon isotopes. Since minute mixture of carbon isotopes in 
diamond is known to cause large reduction in thermal conductivity [7], investigating the 
isotope effect on carbon nanotubes is of a strong interest. On the other hand, when SWNTs 
contain defects, the local irregular lattice structures should certainly be a strong potential for 
local thermal resistances. A case of such local defective structures is the chirality junction 
where two SWNTs with different chirality and radius are connected through certain 
transitional lattice structures. Such junctions can be found in the actual growth process [8], 
and the junction structure can be uniquely determined for given chiral vectors of an SNWT 
pair [9]. 

On considering practical applications of SWNTs as electrical devices and composite 
materials, characterization of their anisotropic heat transfer is of a prior importance, as the *Received 2 May, 2006 (No. 06-0023) 
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acceptable heat load would be limited by the thermal resistance to the surrounding mediums. 
One of the essential systems to consider in this course is an SWNT bundle, as grown 
nanotubes usually form bundles. As the inter-tube heat transfer is governed by the weak van 
der Waals force, the system is expected to show strongly anisotropic heat transfer with 
relatively small inter-tube thermal boundary conductance. Once the inter-tube heat transfer 
is identified, it would be natural to extend the study to investigate the thermal conductance 
between SWNT and some omnipresent materials such as water. Furthermore, as there are 
ongoing extensive research on the water in an SWNT in connection with its anomalous 
phase change in the nanoscale quasi-one-dimensional confinement [10], characterization of 
heat conduction should hold certain interest. 

The current paper aims to provide results from series of molecular dynamics simulations 
in order to characterize the anisotropic thermal properties of SWNTs in practical situations 
with effects of impurities and defects. Firstly, we investigate the attenuation of the thermal 
conductivity due to the isotope impurities and chirality junctions. Secondly, the heat 
transfer from an SWNT to various surrounding materials is simulated. Heat transfer 
between SWNTs in a bundle of nanotubes and between water and an SWNT are considered. 
In both interfacial systems, the heat transfer rate can be well expressed by the thermal 
conductance at the boundary. Finally, the anisotropic heat transfer of SWNTs is 
characterized by comparing the axial and radial heat conduction. 
 

2. Simulation Methods 

2.1 Potential Functions 
The Brenner potential [11] with the simplified form [12] is employed as the potential 

function between carbon and carbon within a nanotube. This potential can describe variety 
of small hydrocarbons, graphite and diamond lattices. The basic formulation of the potential 
is based on the covalent-bonding treatment developed by Tersoff [13]. The total potential 
energy of the system Eb is expressed as the sum of the bonding energy of each bond 
between carbon atoms i and j.  
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where VR(r) and VA(r) are repulsive and attractive force terms, respectively. The Morse type 
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The effect of the bonding condition of each atoms is taken into account through B*
ij term 

which is the function of angle θijk between bonds i-j and i-k, 
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The constants are shown in Table 1. Here, we have employed the parameter set II (table 
2 in [11]), which reproduces the force constant better. Here, we have ignored [12] the term 
for the conjugate bond from original expressions of Brenner. The velocity Verlet method 
was adopted to integrate the equation of motion with the time step of 0.5 fs. 

In case of simulating an SWNT bundle, in addition to the Brenner potential between 
carbon atoms within an SWNT, van der Waals force between carbon atoms in different 
SWNTs was expressed as 12-6 Lennard-Jones potential with parameters in Table 2.  

On investigating the heat transfer at the boundary between an SWNT and confined 
water molecules, the Brenner potential was used between carbon and carbon. Water 
molecules were expressed by SPC/E potential [14]. SPC/E potential is expressed as the 
superposition of Lennard-Jones function of oxygen-oxygen interaction and the electrostatic 
potential by charges on oxygen and hydrogen as follows. 
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where R12 represents the distance of oxygen atoms, and σOO and εOO are Lennard-Jones 
parameters. The Coulombic interaction is the sum of 9 pairs of point charges. The potential 
was simply cut off at a distance of 25 Å. The potential energy between two water molecules 
with a distance of 25 Å was calculated to be 0.043 kJ/mol at maximum and -0.042 kJ/mol at 
minimum, which is considered to be small enough not to have significant influence on the 
interfacial heat conduction. The potential function between water molecules and carbon 
atoms are represented by Lennard-Jones function (with parameters in Table 2) and the 
quadrupole interaction term, 
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where α and β run over the Cartesian coordinates x, y, z, and r is the distance between the 
charge site and the quadrupole carbon site and δα,β is the delta function [15, 16]. The 
quadrupole moment tensor is given by, 

240C1003.322 −
′′′′′′ ×−=Θ=Θ−=Θ− zzyyxx ,    (9) 

where x’, y’ and z’ denote the local coordinate system centered at the quadrupole site with z’ 
being the wall normal direction. 
 
2.2 Thermal Conductivity Measurements 

Table 1.  Parameters for Brenner potential. 

De [eV] Re [Ǻ] S R1 [Ǻ] R2 [Ǻ] 

6.0 1.39 1.22 1.7 2.0 

β [Ǻ-1] δ a0 c0 d0 

2.1 0.5 0.00020813 330 3.5 
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In our previous reports [5, 6], thermal 
conductivity was calculated from the measured 
temperature gradient and the heat flux obtained 
by the energy budgets of phantom molecules. 
After obtaining the average temperature of about 
300 K or 100 K with the auxiliary velocity 
scaling control, simulations with only the 
phantom temperature control were performed for 
typically 1 ns in order to achieve the equilibrium. 
Then, for the quasi-stationary state with the 
temperature difference of 20 K, the measurement 
of the temperature distribution was carried out for typically 10 ns. From energy budgets of 
controlling phantom molecules, the heat flux along the tube can be simply calculated. 
Combined with the temperature gradient, the thermal conductivity λ can be calculated 
through the Fourier's equation,  

z
Tq
∂
∂

−= λ .  (10) 

The cross-sectional area A of a nanotube can be defined in two different ways. One is to 
use the area of a hexagon dividing a bundle of SWNTs: ( )22/2/32 bdA += , where b is 
van der Waals thickness 0.34 nm. The other definition uses the ring of van der Waals 
thickness: πbd, which can also be a proper one [5, 6]. The former definition is appropriate 
for calculating the amount of heat which can be conducted by nanotubes packed in a limited 
cross-sectional area. The latter definition is essential for measuring the enhancement of 
thermal conductivity with a double-walled carbon nanotube (DWNT) or peapod. Here, 
DWNT is made of 2 concentric SWNTs and peapod is an SWNT filled with fullerene. 
Furthermore, the latter definition is suited for comparison of SWNTs with different 
diameters [5, 6], because the thermal conductivity should be primarily proportional to the 
circumferential length of a nanotube.  

The calculated thermal conductivity for finite length SWNTs was not as high as the 
previously reported value for the infinite length SWNT, 6600 W/mK at 300 K [4].  
However, the thermal conductivity is still much higher than high-thermal conductivity 
metals. The dependence of the thermal 
conductivity on the nanotube length is 
shown in Fig. 1. In the length regime 
reported in [5, 6] (L<0.4 µm), the thermal 
conductivity showed a power-law 
increase with respect to the nanotube 
length. The observed power-law 
dependence gave rise to discussions on 
the analogy to the one-dimensional model 
calculations of thermal conductivity [17, 
18], where λ diverges with increasing L. 
In the current report, we present the 
length effect in much wider range of tube 
lengths (L<3.2 µm) as marked with 
circles in Fig. 1. Recently, we have also 
performed simulation using Nose-Hoover 
thermostats to investigate the influence of 
thermal boundary resistances between the 
temperature controlled tube ends and the 

Table 2. Parameters for 
Lennard-Jones potentials. 

 σ [nm] ε [meV] 

Carbon-Carbon 0.337 2.400 

Carbon-Water 0.319 0.674 
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Fig. 1. Dependences of thermal conductivity 
on the length of nanotubes L for 300 K 
computed with the phantom boundary 
condition (B. C.) [5, 6] and modified 
boundary B. C. [19]. 
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rest of the nanotube [19]. The length and relaxation time of the thermostats were tuned to 
minimize the thermal boundary resistances. The obtained thermal conductivity (asterisks) 
agrees well with that calculated using the phantom technique. The overall trend of the 
thermal conductivity length dependence follows the solid line in Fig. 1. Although the 
thermal conductivity is expected to converge when the tube length is much longer than the 
mean free path of phonon carrying energy, in the larger L regime in the explored parameter 
space (200 nm<L<3.2 µm), the thermal conductivity still exhibits an exponential growth.  
 

3. Results and discussions 

3.1 Isotope effects on thermal conductivity 
Thermal conductivity of nanotube with randomly distributed 13C with various ratios was 

calculated. As seen in Fig. 2, the general trend of the results shows that the thermal 
conductivity decreases as the number ratio of 13C increases due to the enhancement of 
phonon scattering. Further analysis reveals that the dependence of thermal conductivity on 
isotope ratio can be well fit to the following equation indicated by solid lines in Fig. 2. 
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where β is the number ratio of 13C, 0λ  the thermal conductivity of pure 12C-SWNTs and 
C1 a fitting parameter. The equation can be formulated through a simple phonon collision 
model. Assuming effective heat capacity Cv and phonon relaxation time τp invariant for all 
the phonons with contribution to the heat conduction, the thermal conductivity can be 
expressed in the conventional form, 

  ∑=
i

ipv vC 2

3
1 τλ .      (12) 

The simplest model of the enhancement of the phonon collision rate τp due to the presence 
of isotopes can be expressed as, 
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where τp0 is the collision rate of the pure 12C-SWNT and τp1 is a representative collision rate 
due to the impurities. Substituting (13) 
into (12) and taking the mass difference 
of isotopes into account, one can easily 
reach the expression (11) with the fitting 
constant 1C  being the inverse of thermal 
conductivity based on τp, 
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The results of the current MD simulations 
suggest that, at room temperature, the 
isotope effect on the heat conduction of 
SWNTs is minor compared with that on 
the diamonds, where, for β=1 %, about 
30 % thermal conductivity reduction was 
experimentally observed [7]. 
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Fig. 2. Effect of 13C isotope on thermal 
conductivity of SWNT. 
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Two cases with different length were 
simulated at 300 K in order to examine 
the size dependence of the isotope effect. 
As shown in Fig. 2, the variation of the 
thermal conductivity between the two 
results is almost constant. One could 
understand that the additional long 
wavelength phonons by lengthening the 
nanotube are not influenced by the 
isotopes whose effects are localized in 
relatively short atomic length scale. 

The temperature dependence was 
tested by lowering the temperature of the 
50nm nanotube to 100 K. Note that this 
case violates the limitation of the classical 
MD simulation, which cannot reproduce 
the correct heat capacity at low 
temperature [6]. Still, this type of case 
studies should be beneficial to gain 
insights in terms of molecular dynamics. 
The analyses allow us to probe the 
influence of the isotope effect on phonon 
mean free path. If we assume the quantum 
effect on the heat capacity and isotope 
effect on the phonon mean free path to be 
independent of each other at low 
temperature, the proper thermal 
conductivity can be roughly estimated by multiplying thermal conductivity calculated by 
the MD simulations with the ratio of reduction in heat capacity due to the quantum effect. 
By lowering the temperature, the phonon mean free path becomes longer due to the 
reduction of thermal scattering. As seen in Fig. 2, the reduction ratio does not show major 
dependence on the temperature, hence the current simulation results do not suggest a 
significant influence of the phonon mean free path on the isotope effects. 
 
3.2 Thermal conductance at an SWNT junction  

One example of the interesting features of the system with nanotube junctions is the 
thermal conductance at the junction of nanotubes 
with different chiralities. The simulated system is 
shown in Fig. 3. In this case a (12, 0) zigzag 
nanotube on the left-hand side and a (6, 6) 
armchair nanotube were smoothly connected 
using 5-membered and 7-membered rings at the 
junction. By applying different temperatures at 
each end, temperature distribution was measured 
as in Fig. 4. The temperature jump at the junction 

(12,0) d = 0.95 nm (6,6) d = 0.83 nm(12,0) d = 0.95 nm (6,6) d = 0.83 nm(12,0) d = 0.95 nm (6,6) d = 0.83 nm(12,0) d = 0.95 nm (6,6) d = 0.83 nm(12,0) d = 0.95 nm (6,6) d = 0.83 nm(12,0) d = 0.95 nm (6,6) d = 0.83 nm

 
Fig. 3. Junction of two different SWNTs. 
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Fig. 4. Temperature jump at the junction by 
local increase in the thermal resistance. 
 

 
Fig. 5. Initial condition of SWNT 
bundle simulation. 

Table 3.  Parameters used for calculation of the 
thermal conductance at SWNT junctions. 

d [nm] A [nm2] ∆T [K] Q [W] 

0.83194 0.889 4.05 5.16×10-8 
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is clearly observed. This temperature jump can be modeled by assuming that there is a 
virtual boundary between two nanotubes with different structures. Now, we consider the 
thermal boundary conductance (TBC) of the virtual interface which relates the temperature 
drop and the heat flux through the boundary as, 

TA
QK
∆

= .       (15) 

TBC at the junction is calculated as 1.4×104 MW/m2K using the values in Table 3. Here, the 
cross-sectional area was defined as πbd. We have also tried various combinations of 
SWNTs whose diameter ratio ranges up to about 2. Furthermore, if we allow two connected 
nanotubes to be uncoaxial, various possible structures for a given pairs of SWNTs can be 
constructed. Although the results are not shown here, the TBC of the tested geometries falls 
well within an order of magnitude difference. The detailed data of this parameter study will 
be reported elsewhere.  
 
3.3 Inter-tube thermal conductance in an SWNT bundle 

As the initial condition, 7 SWNTs with the length of 2.51 nm were placed in a 
2.51×6.0×6.0 nm simulation cell as in Fig. 5. Each SWNT was a (5, 5) armchair tube with 
0.693 nm in diameter. At the beginning of the computation, the whole system was kept at 
300 K for 100 ps. The inter-tube distance at equilibrium approximately corresponds to σ. 
Then, the temperature of only the central SWNT was suddenly increased to 400 K using the 
velocity scaling method for 10 ps. After that, all the temperature controls were turned off.  

Table 4. The characteristic length of the thermal conductance. 

 
S 

[nm2]
ρcoldVcold 

[kg] 
ccold 

[J/kgK]
ρhotVhot 

[kg] 
chot 

[J/kgK] 
K 

[MW/ m2K]
LTC 

[µm] 

SWNT-SWNT 18 2.39×10-23 1039 3.99×10-24 1039 4.04 0.207 

SWNT -Water 28.8 5.74×10-24 1153 3.19×10-23 1039 5.01 0.186 
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Fig. 7. Time history of the temperature 
difference of central and surrounding 
SWNTs. 
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Fig. 6. Time histories of the temperature of 
hot (central) SWNT and cold (surrounding) 
SWNTs. 
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Figure 6 shows a time history of the temperature difference between the hot (central) 
tube and cold (surrounding) tubes. Here, the heat transfer from the central tube to 
surrounding tubes is clearly observed. In order to examine this heat transfer, temperature 
difference of central and surrounding tubes is drawn in Fig. 7. The monotonic decay of the 
temperature difference in Fig. 7 was well approximated by an exponential function; 







−=−

τ
tTTT coldhot exp0 ,       (16) 

where 

ps7.48,K58.990 == τT . 

The non-stationary heat transfer problem can be simplified if the intra-tube resistance to 
heat transfer is small compared to the inter-tube TBC. This is the case in the current 
problem as the Biot number in Eq. (17) is very small with the extremely small characteristic 
length of an SWNT. 

KdBi
λ

= .       (17) 

Then the lumped capacity method in Eq. (16) can be adopted, 




















+−=− KSt

VcVc
TTT

coldcoldcoldhothothot
coldhot ρρ

11exp0 ,   (18) 

where ρ, c, V and S are density, heat capacity, volume and contact area, respectively. Here, 
S is estimate as the surface area of hexagonal cells dividing a bundle of SWNTs. Note that 
we have reduced a bundle of 7 SWNTs to a two body problem by assuming the 
homogeneous non-stationary heat transfer to the 6 surrounding SWNTs from the central one. 
The excellent agreement to an exponential fit by Eq. (16) in Fig. 7 shows the validity of the 
current analysis. Comparing Eq. (16) with Eq. (18), the thermal boundary conductance K 
was estimated. By using values in Table 4, TBC between SWNTs in a bundle was 
calculated to be about 4.04 MW/m2K.   

 
3.4 Thermal conductance between SWNT and confined water 

A (10, 10) SWNT with length of 20.1 nm containing 192 water molecules inside was 
prepared in the 20.1×10.0×10.0 nm fully-periodic simulation cell as in Fig. 8. In the initial 
stage of simulation, water molecules and the SWNT were equilibrated at temperature of 300 
K. Then, only the temperature of the SWNT was suddenly heated up to 400 K. After 
applying the heat for 1 ps, all the temperature controls were turned off. 

Figure 9 shows the temperature time evolutions of the SWNT and water molecules, 
where the heat transfer from heated SWNT to water is observed. On extracting the time 
history of the temperature difference shown in Fig. 10, just as in the case of the SWNT 
bundle, a clear fit to the exponential function Eq. (16) was observed with following 

 
Fig. 8. An SWNT and the confined water molecules. 
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parameters.  

ps2.38,K5.850 == τT . 

K is estimated to be 5.01 MW/m2K using the lumped capacity method similarly to the case 
of the SWNT bundle simulations.  
 
3.5 Anisotropic heat transfer of SWNTs  

The above results indicate that even with isotope impurities and junctions, the carbon 
nanotube heat transfer is strongly anisotropic. Note that TBC computed for the chirality 
junction is several orders larger than that for the SWNT bundle and water confined SWNT. 
Here, by taking the representative value of the axial thermal conductivity of SWNT as 1000 
W/mK, we characterize the anisotropic heat transfer of SWNTs. Now, by balancing the 
axial and radial heat conduction as,  

  KS
L

A
=

λ ,       (19) 

we can estimate the characteristic length of the thermal conductance at the boundary based 
on the axial thermal conductivity. By denoting this characteristic length of TBC as (LTBC), 
we obtain, 

  ( )KdL
L

d

TBC
TBC

π
λπ

=






 2

4 ,      (20) 

hence, 

  
K
dLTBC

λ
2
1

≡ .       (21) 

By using Eq. (21), LTBC is calculated to be 0.207 µm as shown in Table 4. In other words, 
when the length of SWNT is 0.207 µm, the thermal conductance in axial direction and that 
in radial direction balance. Suppose one uses an SWNT as a promoter of heat conduction as 
a composite material, inter-tube TBC determines the performance for a shorter nanotube 
than LTBC. LTBC between the SWNT and water molecules is also calculated using Eq. (21) as 
0.186 µm.  
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Fig. 10. Time history of the temperature 
difference of SWNT and confined water. 
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Fig. 9. Time histories of the SWNT and 
water temperature. 
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In course of promotion of heat conduction in engineering applications, one may think of 
attaching one end of SWNT bundles to the heat source to use them as fins. One of the key 
issues here to optimize the cost of material would be the dependence of the efficiency of the 
fins on the tube length. This can be characterized by the fin efficiency, 

β
βη

L
L

f
tanh

= ,       (22) 

where the parameter β in this case is expressed as, 

d
K

A
dK

λλ
πβ 4

== .      (23) 

Since thermal conductivity of finite SWNTs exhibit distinct size effect, the length 
dependence of the efficiency can not be purely characterized by a universal value of β. For 
the representative value of thermal conductivity, 1000 W/mK, β can be calculated to be 4.83 
µm-1. 
 

4. Conclusions 

Anisotropic heat transfer of SWNTs was characterized based on molecular dynamics 
simulations. The expected high thermal conductivity can be reduced by randomly mixing 
13C isotopes, where the reduction increases with the number ratio of the mixed isotopes 
following the trend matches with a simple phonon collision model. The axial heat 
conduction can also be hindered by the chirality junctions, where the local irregular lattice 
structure gives rise to a jump in the temperature profile at the boundary. These effects, 
however, are still minute compared with the radial heat transfer through the wall interfaces 
to other SWNTs or confined water. By using the lumped capacity method, thermal 
boundary conductance (TBC) at SWNT-SWNT and water-SWNT interfaces was estimated. 
Finally, the anisotropic heat conduction was characterized by adopting some of the 
engineering properties. The characteristic length scale of TBC is calculated to be 0.207 µm 
in the SWNT bundle case, and 0.186 µm in the SWNT and water molecules case, 
respectively.  
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