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Based on the generalized tight-binding model we study the electronic structure of all the semi-
conductor nanotubes with their diameters between 7.5 Å and 15.5 Å. We find that the van Hove
peak separations versus nanotube diameters shows a qualitative difference from the well known plot
based on zone-folding models. It has been clarified that the top of the valence band of the (n, m)
nanotube in which the remainder of |n − m| divided 3 is 1 is lower in energy than that of the
other semiconducting nanotubes of which remainder is 2. This dependence is originated from the
wavefunction characters at the wavenumbers allowed by the periodic boundary condition along the
circumference imposed on the hexagonal Brillouin zone of the graphene sheet.

PACS numbers: 73.22.-f, 71.20.Tx, 73.20.At

Carbon nanotubes [1] have attracted a lot of atten-
tion in the last decade due to possible applications for
nano-meter scale electronic devices in the next genera-
tion [2]. One of the most fascinating characteristics is
that the nanotubes exhibit interesting variations of their
electronic structures depending on their atomic arrange-
ment along the circumference [3–5]. The electronic struc-
tures of the nanotubes are characterized by the chiral in-
dex (n,m): The nanotubes are metallic when |n − m|
is a multiple of three, whereas they are semiconduct-
ing otherwise [3, 5]. The peculiar electronic property
is due to an anisotropic energy bands of the graphene
sheet and an additional boundary condition imposed on
electron states of a graphite sheet which is rolled into
each nanotube. The electronic property indicates a pos-
sibility to identify an atomistic geometry of the nanotube
by comparing experimental results on optical spectra for
the nanotube. Indeed, a plot of van Hove transition ener-
gies versus nanotube diameters, which is called Kataura
plot [6], is now a commodity for an experimentalist us-
ing resonant Raman spectroscopy. The original Kataura
plot was generated by the zone-folding technique based
on the π tight-binding energy dispersion of graphene [6].
By the adjustment of the interaction energy γ0, satis-
factory fit to resonant Raman scatterings by individual
nanotubes was obtained [7, 8]. On the other hand, the
near infrared fluorescence spectra of water-suspended iso-
lated nanotubes measured for scanning excitation wave-
length [9] gave first band gap, E11, and second band gap,
E22, of each nanotube. A tight-binding model includ-
ing the third nearest neighbor transfer [10] was used for
the assignment of (n,m) to the experimentally observed
pairs of E11 and E22. Unfortunately, the discrepancy of
these two major Kataura plots [7, 11] is quite large.

In addition to the chirality, it has been reported that
curvature also affects the electronic structure of the nan-
otubes. In the graphite, electron states are classified into
two groups; σ (sp2 orbital) and π (pz orbital) states. In
the nanotubes, however, the π states are rehybridized

with the σ states due to its lack of mirror symmetry.
Thus the rehybridization causes downward shifts of the
π electron states of the nanotubes and the amount of the
shift depends on the curvature. This effect induces the
metallization for single-walled nanotubes smaller than
(6,0) [12, 13] and double walled nanotubes with an in-
ner (7,0) nanotube [14].

There have been a lot of theoretical calculations those
studied the electronic structure of the single-walled nan-
otubes [3–5, 12]. Due to large translational vectors, the
quantitative electronic structures of the chiral nanotubes
are not sufficiently elucidated yet [13, 15, 16]. However,
the quantitative electronic structures of these nanotubes
are recently desired to identify the chirality of the nan-
otubes by comparing the fluorescence spectra observed
experimentally, because the dominant chirality of nan-
otube samples depending on the generation process is
now being discussed [17–19]. Thus, in the present work,
we study the electronic structures of all semiconduct-
ing nanotubes with their diameters ranging from 7.5 Å
to 15.5 Å by using the generalized tight-binding model
which quantitatively reproduces the electronic structures
of various carbon materials. This diameter range covers
the diameter of experimentally obtainable single-walled
nanotubes by laser-furnace [20], HiPco [21], or alcohol
CCVD techniques [22]. In particular, we give detailed
discussions for the electron states near the gap, E11 and
E22 gaps, which are related to emission and excitation
spectra, respectively. Our systematic studies elucidate
that the occupied electron states strongly depend not
only on the curvature but also on the chiral vectors of
the semiconducting nanotubes.

The electronic structures of nanotubes are calculated
by using the generalized tight-binding model [23, 24].
Here, 2s and 2p states of a carbon atom are used as
the basis set to discuss the π-σ rehybridization induced
by the curvature of the nanotube. Furthermore, the
nonorthogonality of the atomic orbitals between neigh-
boring sites is fully taken into account. Transfer and
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overlap integrals between neighboring atomic orbitals
have suitable distance dependences in order to reproduce
the electronic band structures of various atomic configu-
ration of the carbon atoms. To give the more quantitative
discussion for the electronic structure of the nanotubes,
we chose the parameter set which gives consistent results
with those by the LDA calculation for both graphite and
solid C60 [24]. Indeed, the present model is found to be
accurate enough to reproduce the electronic structure of
various carbon materials [3, 25].

To obtain the electronic structure of the graphene
sheet, we also use the local density approximation
(LDA) [26, 27] in the density functional theory(DFT) [28,
29]. Norm-conserving pseudopotentials generated by us-
ing the Troullier-Martins scheme are adopted to describe
the electron-ion interaction [30, 31]. The valence wave
functions are expanded by the plane-wave basis set with
a cutoff energy of 50 Ry.

Figure 1 (a) shows the energies which give the first
occupied (ε1), the second occupied (ε2), the first unoc-
cupied (ε∗1), and the second unoccupied (ε∗2) van Hove
singularities of semiconducting nanotubes as a function
of the tube diameter. The ε1 energies are obviously clas-
sified into two groups: The tubes possess their indices n
and m which satisfy the relations |n − m| = 3N + 1
(mod=1 nanotubes) and |n − m| = 3N + 2 (mod=2
nanotubes), where N are integer numbers. The ε1 en-
ergies of the mod=1 nanotubes are found to be lower in
energy than those of the mod=2 nanotubes possessing
the same diameter. The result is in sharp contrast to
those obtained by the π only tight-binding calculation
(not shown) and by the zone folding analysis to the two-
dimensional energy band of graphene sheet calculated in
density functional theory [Fig. 1 (b)] and in the general-
ized tight-binding model [Fig. 1 (c)]. Since the curvature
effect is not taken account in the π tight-binding and the
zone-folding analysis, this discrepancy elucidates an im-
portance of the curvature for the electronic structures of
the semiconducting nanotubes.

In the zone folding analysis, the energies of ε1 and ε∗1
are determined by the distance between K point where
the π band touches the π∗ band and the wavenumber al-
lowed by the periodic boundary condition along the cir-
cumference of the nanotube which gives a discrete set
of the k lines in the hexagonal Brillouin zone of the
graphene sheet. The anisotropic energy bands of π and
π∗ states around the K point results in the above inter-
pretation: Gradients of π and π∗ states along the K-Γ
line is larger than those along the K-M line (Fig. 2). As
shown in Fig. 2, it is found that the distance between K
point and one of discretized one-dimensional wavenum-
bers for the mod=1 tube [K-M direction in Fig. 2 (a)] is
the same as that for the mod=2 tube [K-Γ direction in
Fig. 2 (b)] possessing almost the same diameter. Thus
the ε1 energy of the mod=2 tube is lower than that of
the mod=1 tube due to the large gradient of the π band
along the K-Γ line. For the single orbital tight binding
approximation, since the curvature effects which are de-

scribed by the hybridization between 2s and 2p states
of the C atoms are not taken account, the calculation
enables us to reach the same conclusion; the ε1 of the
mod=2 tube is lower than that of the mod=1 tube.

The result obtained by the above procedures is not
in the case for the calculations which take account of
the modulation of the electronic structures originated
from the curvature of the nanotubes, e.g. the general-
ized tight-binding model and DFT calculations. In these
cases, due to their lack of the mirror symmetry at the
atomic array, the π states are rehybridized with the σ
state. The rehybridization causes downward shifts of the
π electron states of the nanotubes and the amount of the
shift depends on the curvature, since the σ state pos-
sesses lower energy than the π states. It is obvious that
the downward shift for the tube with small diameter is
larger than those for the thicker tubes, because the re-
hybridized π states contains the substantial amount of σ
components. Furthermore, it is found that the downward
shift depends not only on the curvature but also on the
chiral index of the nanotube.

Figure 3 shows the squared wavefunction of the π state
of the graphene sheet at Γ and M points calculated by the
LDA. The wavefunction is found to possess antibonding
character at the M point whereas bonding character at
the Γ point. The result indicates that the downward shift
of the π state depends on the wavenumbers k allowed by
the periodic boundary condition imposed on the tubular
structure: In the mod=1 tube, the wavenumber which
gives the top of the valence band is located near the K-
M line [Fig. 2 (a)]. Along the line, the π state possesses
antibonding character which is not affected by the rehy-
bridization of the π and σ states so that the downward
shift of the state takes place. On the other hand, in
the mod=2 tubes, the wavenumber corresponding to the
valence-band top is located near the K-Γ line [Fig. 2 (b)]
on which the π state exhibits bonding character. This
distribution of the state strongly affects the energy value
of ε1 because the rehybridization induces the modulation
of the wavefunction distribution which costs the electron
energy. Thus the ε1 energy shifts upward compared with
that of the mod=1 tube. Owing to the difference in
the direction of the wavenumber giving the ε1 energy,
the electronic structures around the energy gap for the
semiconducting nanotubes exhibit different characteris-
tics from those obtained by the π tight-binding calcula-
tion and the zone-folding analysis on the graphene sheet.

In addition to the ε1, the energy ε2 also exhibits the
opposite nature to those obtained by the π tight-binding
calculation and the zone-folding analysis. In the case, the
wavenumbers which give the ε2 are located near the K-Γ
and K-M lines for mod=1 and mod=2 tubes, respectively.
Thus, the ε2 of the mod=1 tubes substantially shift up-
ward and posses higher energy than those of the mod=2
tubes.

Based on the calculations, we replot a new Kataura
plot that gives the energies E11 = ε∗1 − ε1 and E22 =
ε∗2 − ε2 as a function of the tube diameter. Due to the
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FIG. 1: Energies of ε1, ε∗1, ε2, and ε∗2 for semiconducting nanotubes as a function of the tube diameter obtained by using (a)
the generalized tight-binding model, and zone-folding analysis for the electronic energy band of the graphene sheet calculated
by (b) the density functional theory and (c) the generalized tight-binding model. Squares and circles denote the mod=1 and
mod=2 tubes, respectively. Solid and empty marks for each tube denote occupied (ε1 and ε2) and unoccupied (ε∗1 and ε∗2)
electron states, respectively. In (b), the energies are measured from the Fermi level of the graphene sheet.
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FIG. 2: The wavenumbers k allowed by the periodic boundary
condition along the circumference for (a) the mod=1 tube,
(10,0) and (b) the mod=2 tube, (9,1) near K point in the
hexagonal Brillouin zone of the graphene sheet. Thick solid
and dotted lines denote wavenumbers k around the K point
and the boundary of the first Brillouin zone of the graphene
sheet, respectively. Contour lines denote the two-dimensional
energy band of the graphene sheet calculated by LDA. The
values shown in figure are in the unit of eV.
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FIG. 3: Contour plots of the squared wavefunction of the π
state of the graphene sheet at Γ and M points. Each contour
represents twice (or half) the density of the adjacent contour
lines. Solid circles and dashed line denote the C atoms and
the position of the graphene sheet, respectively.

asymmetric behaviour of the ε1 and ε2 for the mod=1
and the mod=2 tubes with the same diameter, the gap
energy E11 and E22 of the mod=1 tube is larger than
that of the mod=2 tube. The results open a possibil-
ity of new assignment for the diameter of the nanotubes
by comparing the optical spectra corresponding to the
gaps E11 and E22. As shown in Fig. 4, the energy differ-
ence between the energy gaps of the mod=1 and mod=2
tubes is substantially small. The small dispersion of the
gap energy is due to the localized nature of the basis set
for the calculation in which we only take account of the
atomic orbitals of the 2s and the 2p states of C atom. In
this case, the localized states are insufficient to describe
the rehybridization effects on the π and σ states for the
tubes with substantial curvature. It is expected that the
dispersion of the gap energies are underestimated in the
present calculation and that the calculations in which
the basis set sufficiently expresses the extended nature
of the wavefunction, e.g. the LDA [16], the generalized
gradient approximation, and the quasi particle approxi-
mation [32], give larger dispersion for the gap energies.
We thus conclude that further calculations are desired to
obtain the ultimate version of the Kataura plot.

In summary, based on the generalized tight-binding
calculations we explored the electronic structures of all
the semiconducting nanotubes with their diameters be-
tween 7.5 Å and 15.5 Å. We found that the occupied
electron states strongly depends not only on the curva-
ture but also on the chiral vector of the nanotubes. The
highest occupied states of the mod=1 nanotube is lower
in energy than that of the mod=2 nanotube with the
same diameter. While the energy which gives the sec-
ond occupied van Hove singularity of the mod=1 tube is
higher than that of the mod=2 tube. The peculiar chiral-
ity dependence of the π electron states is totally due to
the distribution of the wavefunction at the wavenumbers
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FIG. 4: Energy gap between the first occupied and unoccupied van Hove singularity (E11) of the semiconductor nanotubes
as a function of the tube diameter obtained by (a) the generalized tight-binding model and (b) zone-folding analysis for the
electronic energy band of the graphene sheet calculated by LDA. Energy gap between the second occupied and unoccupied van
Hove singularity (E22) is also shown. Squares and circles denote the mod=1 and mod=2 tubes, respectively. Solid and empty
marks for each tube denote the E11 and E22, respectively.

corresponding to the states. The curvature induces the
rehybridization between π and σ states resulting in the
modulation of the distribution of the wavefunctions. On
the K-Γ line, the modulation causes the upward shift of
the electron states due to the bonding character of the
wavefunction along this line. On the other hand, on the
K-M line, the electron state is not affected due to the an-
tibonding character of the wavefunction. Owing to the
effects, the energy gap between the first occupied and
unoccupied van Hove singularities for the mod=1 tube is

larger than that of the mod=2 tube.
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