Real-time ab initio calculations of excited-state dynamics in carbon nanostructures

David Tománek Michigan State University tomanek@msu.edu http://www.pa.msu.edu/~tomanek

Acknowledgements

Savas Berber, Yoshiyuki Miyamoto, Hisashi Nakamura, Angel Rubio, Mina Yoon,

University of Tsukuba, Japan Arkady Krasheninnikov, Helsinki University of Technology N.E.C. Tsukuba, Japan **RIST Tokyo** University of Pais Vasco, Spain Oak Ridge National Laboratory

Financial Support: NSF-NSEC

Outline

- Introduction
 - Nanotechnology means more than small size
 - Nanocarbon pioneers
 - Carbon nanotubes: Ideal building blocks for nanotechnology?
 - What happens during electronic excitations?
 - Computational tools
 - State of the art of computer simulations
 - Limitations of quantum devices
- Excited state dynamics in nanocarbons
 - What limits the frequency response of nanotube electronics?
 - Structural changes induced by sputtering
- Dealing with atomic-scale defects
 - Defect tolerance of nanotubes
 - Detection of Stone-Wales defects in nanotubes
 - Selective deoxidation of defective nanotubes
- Summary and Conclusions
- Printed Review:

David Tománek, Carbon-based nanotechnology on a supercomputer, Topical Review in J. Phys.: Condens. Matter **17**, R413-R459 (2005).

It is never late ...

Nanocarbon pioneers

- The C₆₀ 'buckyball' and other fullerenes:
 - successful synthesis
 - potential applications:
 lubrication
 superconductivity

Nanotubes:

- successful synthesis
- potential applications:
 - composites Li-ion batteries medication delivery EMI shielding

flat-panel displays super-capacitors fuel cells hydrogen storage

soot

H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, and R.E. Smalley, Nature **318**, 162 (1985)

Nanotubes in the core of carbon fibers: A. Oberlin, M. Endo, and T. Koyama, J. Cryst. Growth **32**, 335 (1976)

Nanotubes on the cathode in carbon arc: S. lijima, Nature **354**, 56 (1991)

Carbon nanotubes: Ideal building blocks for nanotechnology?

- 1-20 nm diameter
- Atomically perfect
- Chemically inert
- 100 times stronger than steel
- Extremely high melting temperature
- Ideal (ballistic) conductors of electrons, or insulators
- Ideal heat conductors
- Bio-compatible

Nanotubes grow by decomposing carbon compounds ...

... field-effect transistors for the next generation of computer chips ...

Nanotube Field Effect Transistor

... to make bright flat-panel displays ...

... or deliver drugs

Computational tools

Electronic structure calculations: *ab initio* Density Functional theory (DFT)
Time evolution of electronic wave functions: Time-Dependent DFT
Atomic motion: Molecular dynamics simulations (in ground & excited state)
Forces from total energy expressions: E_{tot} = E_{tot}({R_i}) = E_{tot}{ρ(r)}

What approach to use?

Reaction coordinate

Excited state dynamics:

$$H \stackrel{d \psi}{=} = \underbrace{\mathcal{E}}_{n} H \underbrace{\mathcal{W}}_{n}$$
Density Functional Theory
(codes including SIESTA, VASP,
CASTERSEID (SIAN et f))

First-Principles Simulation tool for Electron-Ion Dynamics

Computational details for real-time MD simulations: Sugino & Miyamoto PRB <u>59</u>, 2579 (1999) ; ibid, B <u>66</u>, 89901(E) (2002)

Real-time electron dynamics during molecular dynamics

- Electronic state is fixed in the beginning, then evolves in time
- Continuous checking for nonradiative decay yields bias-free information about lifetime, decay path

Need massively parallel computer architectures and suitable algorithms distribute load over processors for speed-up

The New Hork Eimes

Harth

April 20, 2002

Japanese Computer Is World's Fastest, as U.S. Falls Back

Laboratory:

Simulator,

By JOHN MARKOFF

S AN FRANCISCO, April 19 — A Japanese laboratory has built the world's fastest computer, a machine so powerful that it matches the raw processing power of the 20 fastest American computers combined and far outstrips the previous leader, an <u>LB.M.</u>-built machine.

Cost: \$500,000,000 Maintenance: \$50,000,000/year <70% used for nano-carbons

Limitations of quantum devices

- What limits the speed of nanotube-based electronics?
- What occurs microscopically during sputtering?
- Are nanotube devices as sensitive to defects as Si-LSI circuits?
- Can defects be identified spectroscopically?
- Can defects heal themselves?
- Are there ways to selectively remove defects?

Outline

- Introduction
 - Nanotechnology means more than small size
 - Nanocarbon pioneers
 - Carbon nanotubes: Ideal building blocks for nanotechnology?
 - What happens during electronic excitations?
 - Computational tools
 - State of the art of computer simulations
 - Limitations of quantum devices
- Excited state dynamics in nanocarbons
 - What limits the frequency response of nanotube electronics?
 - Structural changes induced by sputtering
- Dealing with atomic-scale defects
 - Defect tolerance of nanotubes
 - Detection of Stone-Wales defects in nanotubes
 - Selective deoxidation of defective nanotubes
- Summary and Conclusions
 - Printed Review:

David Tománek, Carbon-based nanotechnology on a supercomputer, Topical Review in J. Phys.: Condens. Matter **17**, R413-R459 (2005).

What limits the frequency response of nanotube electronics?

- How useful are carbon nanotube devices (field-effect transistors, non-linear optical devices)?
- Maximum switching frequency:
 - lifetime of excited carriers

How long do electronic excitations last?What dampens electronic excitations:

•Electron gas?

•Phonons?

Evolution of photoelectron spectra as a function of pump-probe delay. At pump-probe delays of over 200 fs, the spectra can be well described by a Fermi-Dirac distribution (dashed lines).

Experiment: T. Hertel and G. Moos, PRL 84, 5002 (2000)

Theory: Y. Miyamoto, A. Rubio, and D. Tománek, PRL 97, 126104 (2006)

Interpretation: e-e comes before e-ph

Relaxation of hot carriers after a photo-excitation

Atomic motion after excitation

Electron-hole excitation

●Long lifetime (≤ps) ●Efficient damping

Energy transfer between electrons and ions

•Total energy is conserved

Early: damping dominated electronic processes, temperature independent
Later: damping dominated by coupling to phonons, temperature dependent
Electron-phonon coupling is temperature dependent

Structural changes induced by sputtering

- Which atomic processes occur during sputtering?
- Deviation from the Born-Oppenheimer approximation are expected for ion velocities v_I>v_F(nanotubes)
- How important are electronic excitations in sputtering of nanotubes (v_F=8x10⁵ m/s) by protons with E_{kin}=65 eV (v_I=1.1x10⁵ m/s)?

Impact of an H atom on a graphene sheet: $E_{kin}(H) = 25 \text{ eV}$

Non-adiabatic effects in H⁺/graphite collisions

 How adequate is the Born-Oppenheimer approximation in energetic H⁺/graphite collisions?

Conclusion:

Non-adiabatic effects cause only small differences even at 100 eV

Yoshiyuki Miyamoto, Arkady Krasheninnikov, David Tománek (to be published)

Sputtering of nanotubes: Role of electronic excitations? MD simulations for H⁺/(3,3)CNT collisions with E_{kin}(H)=65 eV

- Born-Oppenheimer (ground state) dynamics: Sputtering occurs
- Allowing electronic excitations: Can sputtering occur?

Top view

Side view

- Electronic excitations do affect threshold energy for sputtering
- Nanotubes have an amazing capability to heal defects

Yoshiyuki Miyamoto, Arkady Krasheninnikov, David Tománek (to be published)

Outline

- Introduction
 - Nanotechnology means more than small size
 - Nanocarbon pioneers
 - Carbon nanotubes: Ideal building blocks for nanotechnology?
 - What happens during electronic excitations?
 - Computational tools
 - State of the art of computer simulations
 - Limitations of quantum devices
- Excited state dynamics in nanocarbons
 - What limits the frequency response of nanotube electronics?
 - Structural changes induced by sputtering
- Dealing with atomic-scale defects
 - Defect tolerance of nanotubes
 - Detection of Stone-Wales defects in nanotubes
 - Selective deoxidation of defective nanotubes
- Summary and Conclusions
 - Printed Review:

David Tománek, Carbon-based nanotechnology on a supercomputer, Topical Review in J. Phys.: Condens. Matter **17**, R413-R459 (2005).

Dealing with atomic-scale defects

Defects limit performance, lifetime of devices

•Are CNT devices as sensitive to defects as Si-LSI circuits?

atomic vacancy

Will atomic vacancies trigger failure under high temperatures?
illumination?

Equilibrium structure near a monovacancy in *sp*² carbon

Stability of defective tubes at high temperatures

Danger of pre-melting near vacancies?

T= 0 K

T= 4,000 K

Nanotube remains intact until 4,000 K

• Self-healing behavior:

- Formation of new bond helps recover
 - structural stiffness
 - conductance

Stability of defective tubes under optical excitations ($\Delta E=0.9 \text{ eV}$)

Time evolution of the electronic states

- Very long-lived excitation
- Correct PES is followed in case of level alternation

Structural changes under illumination

 Self-healing due to new bond formation
 Y. Miyamoto, S. Berber, M. Yoon, A. Rubio, D. Tománek, Can Photo Excitations Heal Defects in Carbon Nanotubes? Chem. Phys. Lett. 392, 209–213 (2004)

Reconstructed geometry

Stability increase due to reconstruction (bond formation across vacancy)

Does reconstruction affect favorably transport in defective tubes?

Quantum conductance of a (10,10) nanotube with a single vacancy

Good news for applications: Self-healing by reconstruction may remove one of the sharp dips

Detection of Stone-Wales defects in nanotubes

► How does a Stone-Wales defect react under photo-excitations?

Stone-Wales defects are not removed, but can be identified using photo-excitations

STM characterization of Stone-Wales defects

Y. Miyamoto, A. Rubio, S. Berber, M. Yoon, and D. Tománek, Phys. Rev. BR 69, 121413 (2004).

Selective deoxidation of defective nanotubes

By heat treatment?

⇒No: Larger damage to nanotube

By chemical treatment with H?

Y. Miyamoto, N. Jinbo, H. Nakamura, A. Rubio, and D. Tománek, Phys. Rev. B 70, 233408 (2004).

Alternative to thermal and chemical treatment *Electronic excitations!*

$O2s \rightarrow O2p \ excitation \ (33 \ eV)$

hopeless

Auger decay following the O1s \rightarrow 2p excitation (~520 eV)

Photoexcitations are long-lived
Deoxidation by photo-surgery

Eighth International Conference on the Science and Application of Ouro Preto, Minas Gerais, Brazil June 24-30, 2007 Hanolube msu.edu/nt07/ http:

NO/

Summary and Conclusions

- Time-dependent DFT simulations have been combined with classical MD simulations to investigate the ultrafast dynamics in nanotubes under electronic excitations.
- The TDDFT scheme allows to monitor atomic motion and lifetime of the excitation.
- Electronic excitations in nanotubes exhibit ultrafast dynamics and decay by electronic and phonon channels.
- Photo-excitations may affect threshold energy for sputtering.
- Stone-Wales defects have a spectroscopic signature in the excited state.
- Thermal and electronic excitations may induce selfhealing in defective nanotubes.
- Electronic excitations can selectively remove impurities.
- Electrons may be efficiently excited both by photons and electrons.