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Abstract: 

The formation mechanism of empty and metal-containing fullerene was studied 
through molecular dynamics simulations and Fourier Transform Ion Cyclotron 
Resonance (FT-ICR) mass spectroscopy of laser vaporized carbon cluster. With classical 
molecular dynamics simulations using modified Brenner potential, the clustering 
process starting from 500 isolated carbon atoms in gas phase was simulated under the 
controlled temperature condition. When the control temperature was at Tc = 3000 K, 
imperfect caged clusters like C60 and C70 were obtained. Additional annealing 
simulations to compensate the short time-scale of the simulation resulted the perfect 
Ih-C60 structure through Stone-Wales transformations. A fullerene formation model 
featuring the random caged structure and annealing at the size range of C40 to C60 was 
proposed through the detailed study of the precursor structures in simulations. 
 In order to incorporate metal atoms in the simulation, multi-body classical 
potential functions for metal-carbon and metal-metal interactions were constructed 
based on DFT (density functional theory) calculations of various forms of small clusters 
MCn and Mn (M = La, Sc, Ni). The classical potential was expressed with the Morse 
term and the Coulomb term as function of coordinate number of a metal atom. The 
simulated clustering process with addition of 1 % of metal atoms was compared with 
the pure carbon simulation. When La atoms were applied, the stable open-cap structure 
surrounding the La atom resulted in the La-containing caged cluster. For Sc-C system, 
the host carbon clusters were not affected so much as the La-C case due to the weaker 
Coulomb interaction, and the Sc atom was encapsulated in the host cage at the final 
stage of the growth process. Ni-C system was also simulated to explore the possible role 
of metal atoms in the generation of SWNT. The precursor clusters were similar to those 
in Sc-C system, although the Ni atom finally stayed on a face of 7 or 8 member-ring of 
the caged structure.  

Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometer 
directly connected to the laser vaporization cluster beam source was implemented to 
study the clustering process. With increase of cluster nozzle pressure, three different 
types of positive mass spectra were obtained for pure carbon clusters: smaller than 
about C60 with odd numbered clusters up to C40; almost only C60 and a trace of C70; 
well-known even atom mass with intense peaks at C60 and C70. Qualitatively the lower 
pressure condition of the cluster source corresponded to the earlier stage of the MD 
simulation. Through these comparisons, we speculated that the even-numbered clusters 



corresponded to the annealed random caged clusters. The FT-ICR mass spectra of 
metal-carbon binary clusters were studied for sample materials normally used for 
generation of metal-containing fullerene and SWNT; La: 0.8%, Y: 0.8%, Sc: 0.8%, Gd: 
0.8%, Ce: 0.8%, Ca: 0.3%, and Ni:4.2% - Y: 1%. Positive La-C, Y-C, Sc-C, Gd-C, Ce-C 
binary clusters commonly showed strong MC2n

+ signal in the range of 36 < 2n < 76 with 
intense magic numbers at MC44

+, MC50
+ and MC60

+. Characteristics of these small 
clusters were compared with results of molecular dynamics simulations. 

In order to further study the information of clusters appearing in the mass 
spectra, reactivity of negative carbon clusters and metal-carbon binary clusters to NO 
were measured by the FT-ICR spectrometer. For empty clusters, even-odd alternation of 
reactivity was clearly shown; even clusters were less reactive. Furthermore, carbon 
clusters with La atom such as LaC44

- were very much unreactive to NO. The reactivity 
of clusters contaminated with a hydrogen atom was very curious. One hydrogen atom 
made odd-numbered clusters less reactive and even-numbered clusters more reactive. 
These experimental results were perfectly explained by a consideration of number of 
dangling bonds based on the random-raged geometric structure predicted by the 
molecular dynamics simulations. 
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Typical Structures of FullereneTypical Structures of Fullerene
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Studied Metal Atoms

Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period

1 2
1 H He

1.008 4.003
3 4 5 6 7 8 9 10

2 Li Be B C N O F Ne
6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18

11 12 13 14 15 16 17 18
3 Na Mg Al Si P S Cl Ar

22.99 24.31 26.98 28.09 30.97 32.07 35.45 39.95
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.61 74.92 78.96 79.90 83.80

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

85.47 87.62 88.91 91.22 92.91 95.94 99.00 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3
55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

6 Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
132.9 137.3 178.5 180.9 183.8 186.2 190.2 192.2 195.1 197.0 200.6 204.4 207.2 209.0 210.0 210.0 222.0

87 88 104 105 106 107 108 109 110 111 112
7 Fr Ra ** Unq Unp Unh Uns Uno Une Uun Uuu Uub

223 226 261 262 263 262 265 266 269 272 277
－－－－

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

138.9 140.1 140.9 144.2 145 150.4 152 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
227 232 231 238 237 239 243 247 247 252 252 257 258 259 262

* Lanthanides

** Actinides
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M-C and M-M Potential Function Expression

CARij VVVE ++=

VR: Repulsive term VA: Attractive term

VC: Coulomb term

N C: carbon coordinate number

B*: normalized bond order

cM, cC : charge of M (+) and C(-)

f(rij) : cut-off function

{ })(2exp
1

)( eij
e

ijR RrS
S
DrfV −−
−

= β { })(/2exp
1

)( *
eij

e
ijA RrS

S
SDBrfV −−

−
⋅−= β

ij
ijC r

ccerfV MC

0

2

4
)(

πε
−=

�
≠

+=
)(carbon 

C )(1
jk

ikrfN

{ } δ)1(1 C* −+= NbB

)exp(3 2
C

1M kNkc +−−= C
MC / Ncc =

�
≠

+=
)( metal

M )(1
jk

iki rfN
2

MM
ji

ij
NNN +=

{ })1(exp)( 21 −−+= ijDeeije NCDDND

{ })1(exp)( 21 −−−= ijReeije NCRRNR

M-C M-M

N M
i: metal coordinate number

ij

ji
ijC r

ccerfV MM

0

2

4
)(

πε
=

Metal-Carbon Potential functions

2 3 4

–2

–1

0

–3

po
te

nt
ia

l e
ne

rg
y 

(eV
)

distance r (Å)

VC (N C=15)

(a) La-C

La2

VC (N C=5)

Eb (N C=15)

Eb (N C=5)

–3

–2

–1

0

2 3 4

po
te

nt
ia

l e
ne

rg
y 

( e
V)

distance r (Å)

(b) Sc-C

VC (N C=15)

Sc2

VC (N C=5)

Eb (N C=15)
Eb (N C=5)

–3

–2

–1

0

2 3 4

po
te

nt
ia

l e
ne

rg
y 

( eV
)

distance r (Å)

(c) Ni-C

Ni2

Eb (N C=15)

Eb (N C=5)

Table 1. Poten tial parameters for metal-carbon  in teractions.
De (eV) S β (1/Å) Re (Å) R 1 (Å) R 2 (Å) b δ k1 k2

La-C 4.53 1.3 1.5 2.08 3.2 3.5 0.0854 -0.8 0.0469 1.032
Sc-C 3.82 1.3 1.7 1.80 2.7 3.0 0.0936 -0.8 0.0300 1.020
Ni-C 3.02 1.3 1.8 1.70 2.7 3.0 0.0330 -0.8 － －

Table 2. Poten tial parameters for metal-metal interactions.
S β (1/Å) De1 (eV) De2 (eV) CD Re1 (Å) R e2 (Å) CR R 1 (Å) R 2 (Å)

La-La 1.3 1.05 0.740 2.64 0.570 3.735 0.777 0.459 4.0 4.5
Sc-Sc 1.3 1.4 0.645 1.77 0.534 3.251 0.919 0.620 3.5 4.0
Ni-Ni 1.3 1.55 0.74 1.423 0.365 2.520 0.304 0.200 2.7 3.2
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Example of Excite and Detect WaveformExample of Excite and Detect Waveform
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Growth Process of a Sc Containing Cluster
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For Production of Single Wall Nanotube (SWNT)For Production of Single Wall Nanotube (SWNT)

Combination of Metals: Ni-Co or Ni-Y is necessary
for Production of Single Wall Nanotube

TEM Pictures of SWNT RopesTEM Pictures of SWNT Ropes

Individual tube diameter: 1.3 nm
Spacing: 0.34 nm
Misalignments and Terminations
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Molecular Simulation of Hydrogen Storage in SWNT

Hydrogen 
5376 molecules

Bundle of SWNT
560x8-140

=4340 C Atoms

Growth Process of Ni Attached Clusters

Graphite-like Open cageChain or Ring

Metal inside & outside

time (ps)
20001000 3000 4000

0

20

40

NiC2

NiC18 NiC35 NiC49 NiC50NiC44

C16

cluster size

400 800 1200 1600

0

10
NiC6 NiC10 NiC12 NiC14NiC9

Ni: 5, C: 500 in 34.2nm box
PVWin



13

Tc = 2500 KAnnealing of NiC78 and Ni2C54 Cluster
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Yttrium-carbon binary clustersYttrium-carbon binary clusters
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Summary for Bare ClustersSummary for Bare Clusters
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Revisit the Use of Euler’s TheoremRevisit the Use of Euler’s Theorem
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Summary for La-C Binary ClustersSummary for La-C Binary Clusters
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La@’’’C47
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ConclusionsConclusions
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