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Abstract:

The formation mechanism of empty and metal-containing fullerene was studied
through molecular dynamics simulations and Fourier Transform lon Cyclotron
Resonance (FT-1CR) mass spectroscopy of laser vaporized carbon cluster. With classical
molecular dynamics simulations using modified Brenner potential, the clustering
process starting from 500 isolated carbon atoms in gas phase was simulated under the
controlled temperature condition. When the control temperature was at T, = 3000 K,
imperfect caged clusters like Cq and C;o were obtained. Additional annealing
simulations to compensate the short time-scale of the ssimulation resulted the perfect
Ih-Cso Structure through Stone-Wales transformations. A fullerene formation model
featuring the random caged structure and annealing at the size range of Cy to Cso Was
proposed through the detailed study of the precursor structures in simulations.

In order to incorporate metal atoms in the simulation, multi-body classical
potential functions for metal-carbon and metal-metal interactions were constructed
based on DFT (density functional theory) calculations of various forms of small clusters
MC, and M, (M = La, Sc, Ni). The classical potential was expressed with the Morse
term and the Coulomb term as function of coordinate number of a metal atom. The
simulated clustering process with addition of 1 % of metal atoms was compared with
the pure carbon simulation. When La atoms were applied, the stable open-cap structure
surrounding the La atom resulted in the La-containing caged cluster. For Sc-C system,
the host carbon clusters were not affected so much as the La-C case due to the weaker
Coulomb interaction, and the Sc atom was excapsulated in the host cage at the final
stage of the growth process. Ni-C system was also simulated to explore the possible role
of metal atoms in the generation of SWNT. The precursor clusters were similar to those
in Sc-C system, athough the Ni atom finally stayed on aface of 7 or 8 member-ring of
the caged structure.

Fourier Transform lon Cyclotron Resonance (FT-ICR) mass spectrometer
directly connected to the laser vaporization cluster beam source was implemented to
study the clustering process. With increase of cluster nozzle pressure, three different
types of positive mass spectra were obtained for pure carbon clusters. smaller than
about Gy with odd numbered clusters up to Gy, almost only G, and a trace of Gy;
well-known even atom mass with intense peaks at Cq and C,o. Qualitatively the lower
pressure condition of the cluster source corresponded to the earlier stage of the MD
simulation. Through these comparisons, we speculated that the even-numbered clusters



corresponded to the annealed random caged clusters. The FT-ICR mass spectra of
metal-carbon binary clusters were studied for sample materials normally used for
generation of metal-containing fullerene and SWNT; La 0.8%, Y: 0.8%, Sc: 0.8%, Gd:
0.8%, Ce: 0.8%, Ca: 0.3%, and Ni:4.2% - Y: 1%. Positive La-C, Y-C, Sc-C, Gd-C, Ce-C
binary clusters commonly showed strong MC,," signal in the range of 36 < 2n < 76 with
intense magic numbers at MC,", MCso' and MCg,'. Characteristics of these small
clusters were compared with results of molecular dynamics simulations.

In order to further study the information of clusters appearing in the mass
Spectra, reactivity of negative carbon clusters and metal-carbon binary clusters to NO
were measured by the FT-ICR spectrometer. For empty clusters, evenrodd alternation of
reactivity was clearly shown; even clusters were less reactive. Furthermore, carbon
clusters with La atom such as LaC,4 were very much unreactive to NO. The reactivity
of clusters contaminated with a hydrogen atom was very curious. One hydrogen atom
made odd-numbered clusters less reactive and even-numbered clusters more reactive.
These experimental results were perfectly explained by a consideration of number of
dangling bonds based on the randomraged geometric structure predicted by the
molecular dynamics simulations.
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Group| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period
1 2
1 H He
1.008 4.003
3 4 5 6 7 8 9 10
2 Li Be B C N o F Ne
6.941 | 9.012 10.81 | 12.01 | 14.01 | 16.00 [ 19.00 | 20.18
11 12 13 14 15 16 17 18
3 Na | Mg Al Si P S Cl Ar
22.99 | 24.31 26.98 | 28.09 | 30.97 | 32.07 | 35.45 | 39.95

19 20 21 2 23 24 25 26 27 28 29 30 31 32 33 34 35 36

39.10 | 40.08 | 44.96 | 47.88 | 50.94 | 52.00 | 54.94 | 55.85 | 5893 | 58.69 | 63.55 | 65.39 | 69.72 | 7261 | 74.92 | 78.96 | 79.90 | 83.80

5 Rb Sr Y Zr Nb | Mo | Tc Ru Rh Pd Ag Cd In Sn Sb Te | Xe
85.47 | 87.62 | 88.91 | 91.22 | 92.91 | 95.94 | 99.00 | 101.1 | 102.9 | 106.4 | 107.9 | 1124 | 114.8 | 1187 | 121.8 | 127.6 | 126.9 | 1313
55 56 72 73 74 75 76 7 78 79 80 8L 82 83 84 85 86

6 Cs Ba * Hf Ta % Re | Os Ir Pt Au Hg Tl Pb Bi Po At Rn
132.9 | 137.3 178.5 | 180.9 | 183.8 | 186.2 | 190.2 | 192.2 | 195.1 | 197.0 | 200.6 | 204.4 | 207.2 | 209.0 | 210.0 | 210.0 | 222.0
87 88 104 | 105 [ 106 | 107 | 108 [ 109 | 110 [ 11 | 112

7 Fr Ra ** |'Ung | Unp | Unh | Uns | Uno | Une | Uun | Uuu | Uub
223 | 226 261 | 262 | 263 | 262 | 265 | 266 | 269 | 272 | 27

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
* Lanthanides La Ce Pr Nd | Pm | Sm Eu Gd | Tb Dy Ho Er ™m | Yb Lu
1389 | 140.1 | 1409 | 144.2 | 145 | 1504 [ 152 | 157.3 | 158.9 | 1625 | 164.9 | 167.3 | 1689 | 173.0 | 175.0
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
** Actinides Ac | Th Pa V] Np Pu | Am [ Cm | Bk Cf Es | Fm | Md | No Lr
227 | 232 | 231 | 238 | 237 | 239 | 243 | 247 | 247 | 252 | 252 | 257 | 258 | 250 | 262

Studied Metal Atoms
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Table 1. Potential parameters for metal-carbon interactions.
D. (eV) S B (LA Re (A) Ry (A) Ry (A) b J Ky ks
La-C 4.53 1.3 15 2.08 3.2 35 0.0854 0.8 0.0469 1.032
Sc-C 3.82 1.3 1.7 1.80 2.7 3.0 0.0936 0.8 0.0300 1.020
Ni-C 3.02 1.3 1.8 1.70 2.7 3.0 0.0330 0.8 ] u]
Table 2. Potential parameters for metal-metal interactions.
S BIA) Dey (6V) Dep (V) Co Rei (A) Re, (A) Cr R; (A) Rz (A)
La-la 13 1.05 0.740 2.64 0.570 3.735 0.777 0.459 4.0 45
Sc-Sc 13 1.4 0.645 1.77 0.534 3.251 0.919 0.620 35 4.0
Ni-Ni 13 155 0.74 1.423 0.365 2.520 0.304 0.200 2.7 3.2

Metal-Carbon Potential functions
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Combination of Metals: Ni-Co or Ni-Y is necessary
for Production of Single Wall Nanotube

For Production of Single Wall Nanotube (SWNT) I

TEM Pictures of SWNT Ropes
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Intensity (arbitrary)
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Summary for Bare CIustersI

Reaction with H (Dirty Source) Average of n = 42-51

Ceven: LESS Reactive o CH |CH, |CiH,
n:even|71.6% |19.6% |7.2% |1.6%
n:odd |47.0% |[43.0% |6.4% |3.6%

Coqq: More Reactive

Reaction with NO

Ceven: LeSS Reactive

- _ C..HNO™
Effect of H: More Reactive C,,H +NO - { gen NO-
Coqq: More Reactive
Effect of H: Unreactive C., +NO - C, NO

Possible Reaction Sites I

Even Numbered Clusters Odd Numbered Clusters
# of Dangling Bond =0, 2, 4, ... # of Dangling Bond =1, 3,5, ...
Euler’'s Theorem: 3
V.
f+v=e+2 e=5v3+v2, =?3+2,v=v3+v2=2f —4+v,
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Revisit the Use of Euler’'s Theorem |

Euler's Theorem: f +y=e+2

f: faces, v: vertices, e: edges
Usual Explanation of Even Numbered Positive Spectra
f=1f+f

2e=5f,+6f, I:> fy =12
3v=5f,+6f, V 20+ 2f,

OghCe

More General Treatmentl

Euler's Theorem: f +v=e+2

When All Carbon has 3 Bonds >/®
3

eZEV :> f +v—§v+2 N véf -

v must be even
When Some of Carbon has Dangling Bond

_3 v
= ZV; +V, > f :33+2 ~v=2f -4+y,

V= V3 B V2 . .
Vv, is even/odd when v is even/odd
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Summary for La-C Binary CIustersI

Reaction with H (Dirty Source)

Ceven: Less Reactive (less than 10% react) (n=36)

C,q4q: More Reactive (about 40% react)

Reaction with NO

C...... Unreactive

even*
Coqq: Reactive

Effect of H: Unreactive

MD Simulation
La25+C2500, 3000K
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La@C,, Structures (n = Odd) Observed
in Molecular Dynamics Simulation

La@C,, Structures (n = Even) Observed
in Molecular Dynamics Simulation
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Conclusionsl

FT-ICR Reaction Results Sugget
Annealed Random Cage Model
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