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ABSTRACT: The origin of the chirality of single-walled carbon nanotubes (SWCNTs) has been a long-standing dispute. Molecular dynam-
ics (MD) simulations driven by machine-learning force fields (MLFF), which can study the interface dynamics under near ab-initio accuracy, 
provides a powerful technique to reveal the formation mechanism of SWCNTs. Here, we develop a cobalt-carbon MLFF and perform growth 
simulations on a cobalt catalyst to investigate the chirality preference of the growth of SWCNTs under the vapor-liquid-solid (VLS) regime. 
Through microkinetic modeling, we reproduce the observed growth and defect kinetics, demonstrating their dependence on the chirality. It is 
observed that while the initial chirality assignment is likely related to the configurational degeneracy of the nanotube caps, pentagon defects 
immediately form and resolve after nucleation. Such processes, which we name as diameter control mechanisms, not only control the diame-
ter toward an optimum but also shift the chirality distribution drastically. Our work therefore offers a microkinetic modeling workflow for the 
chirality-dependent kinetics of the SWCNTs, highlighting the important contribution of the defect kinetics to the chirality origination. 

After three decades of the discovery of single-walled carbon 
nanotubes (SWCNTs)1, the origin of their chirality still remains a 
mystery. Due to the lack of in situ experimental methods to charac-
terize the nanotube-catalyst interface structure and its dynamic 
evolution during the growth and nucleation process at atomic scale, 
theoretical methods ought to take the main role in revealing the 
mechanism. The first theoretical works on the possible origin of the 
chirality appeared in 2006, in which Robertson et al. proposed that 
the epitaxy between the edge of certain nanotube caps and catalyst 
surfaces can generate chirality preference2,3. Since then, many theo-
ries have been proposed, mainly regarding the dependence of the 
nucleation probability and the growth rate on the chirality. 

Early formulations on these two quantities are proposed by Yak-
obson et al. They considered the nucleation within classical nuclea-

tion theory4–6, writing the energy of the critical nucleus as 𝐺 =

𝐺ୡୟ୮ + Γ and the nucleation probability as exp(−𝐺/𝑘୆𝑇)𝑠/𝑍, 

where 𝑠 is a degeneracy factor related to possible number of caps, 

etc., and 𝑍 is the partition function. The 𝐺ୡୟ୮ term is the elastic 
energy of the nanotube cap, which is independent on the nanotube 
diameter as they proposed7. Therefore, the chiral angle preference 

in the nucleation originates only from the interfacial energy Γ of the 

edge-catalyst interface, which can be expressed as Γ = 𝑁୅𝜀୅ +

𝑁୞𝜀୞ + Γ୫୧୶, where A and Z represents armchair and zigzag edges, 

and Γ୫୧୶ is a correctio term for the mixing of these A- and Z-edges. 
Their initial model of the growth kinetics is the screw dislocation 
theory4,8, linking the number of “kinks” at the edge to the growth 

rate. Their model favors (𝑛, 𝑛 − 1) chiralities on liquid catalysts 

and (2𝑚, 𝑚) chiralities on solid catalysts. They further switched to 
more sophisticated models based on density-functional theory 
calculations and Kinetic Monte Carlo simulations. 

Later, Bichara et al. developed their thermodynamic models9–11, 
where they added the edge configurational entropy of nanotubes 
onto the edge energy.  From this model, they constructed phase 
diagrams that identify the stable chiralities under different parame-
ters. Ding et al. proposed another model in which the nucleation 

can be kinetically controlled12 — on liquid catalysts, the chirality 

determination is random; but on solid catalysts, the different sur-
face sites can possibly induce chiral selectivity. 

On the other hand, molecular dynamics (MD) simulations can 
function as a computational microscope to observe the atomic 
motion during the growth process. Maruyama et al. first realized the 
few-defects and defect-free growth simulations using classical force 
fields13,14. Very recently, they together with Hedman et al. intro-
duced machine-learning force fields (MLFFs) of the iron-carbon 
system into the simulations, which present much improved accura-
cy15,16. They confirmed that the nanotube edge actually displays 
diverse patterns during growth, which is overlooked in early theo-
ries.  

While the dynamics has been observed in simulations, it is more 
important to develop a theoretical model which can rationally pre-
dict the growth outcomes. In this work, with a home-developed 
MLFF, we simulate the growth of SWCNTs on cobalt catalysts 

because cobalt-based catalysts have shown great success in chirali-
ty-selective growth of SWCNTs17–19. We propose a new representa-
tion for faithful edge pattern statistics and performed microkinetic 
modeling of the growth and defect kinetics at the nanotube-catalyst 
interface using the statistics. Through these results, we concluded 
that the chirality distribution might depend largely on the defect 
kinetics at the nanotube-catalyst interface. 

RESULTS AND DISCUSSION 
SWCNT edge patterns and reaction networks. We propose a 

representation based on Brinkmann et al.’s work20 to enable the 
rigorous enumeration of all edge patterns. By definition, the edge 
patterns can be partitioned by the number of bonds connected to 
the edge atoms, or equivalently the degree of edge vertices. Denot-
ing deg-2 and deg-3 vertices as “2” and “3”, the edge patterns can be 

partitioned into the form of 𝑛 pairs of “23” and 𝑚 pairs of “32”, and 
it is trivial that this partition is unique for chiral SWCNTs. To sim-
plify the notation, we denote the “23” pairs with “0” and the “32” 
pairs with “1” in our following discussions. Such partitioned edge 
patterns thus form circular strings of “0”-s and “1”-s, which are 



 

 

Figure 1. “0-1” and “A-Z” edge pattern representations and reaction networks of a (6,3) single-walled carbon nanotube (SWCNT). (a) Construction 
of the reaction network. The edge atoms and bonds are colored by the type of atomic pair they are in, the pair “23” (“32”) in violet (blue). This nota-
tion is further simplified by denoting “23” (“32”) with “0” (“1”) or violet (blue) beads on a necklace. After assigning “10” to A-edges, all “0”-s and “1”-
s left are Z-edges. However, if both “0”-s and “1”-s are left, such “A-Z” representation may not be unique and is displayed in parentheses. All possible 
reactions are C2 addition and etching over anti-armchair sites or A-edges, which can be represented as “01” → “10” and “10” → “01”, respectively. The 
green (blue) arrows show the possible C2 addition (etching) reactions, and their arrow widths denote the rates which are fitted to the statistics from 
the machine-learning force field-driven molecular dynamics (MLFF-MD) simulation. (b) Reaction incidences and the steady-state distributions from 
the MLFF-MD simulation (left) and the model prediction (right).  

called (𝑛 + 𝑚)-length binary necklaces in combinatorics. Taking 

(𝑛, 𝑚) = (6,3) as an example (Figure 1a), with six “0”-s (violet 
beads) and three “1”-s (blue beads) on a necklace, there are ten 
unique edge patterns according to Polya enumeration theorem: 

𝑁ୣୢ୥ୣ =
1

𝑛 + 𝑚
෍ 𝜙(𝑑)

((𝑛 + 𝑚)/𝑑)!

(𝑛/𝑑)! (𝑚/𝑑)!
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where gcd(𝑛, 𝑚) denotes the greatest common divisor of 𝑛 and 

𝑚, and 𝜙(𝑑) is the Euler totient function. Generating an exhaus-
tive list of these edge patterns can be done by simply permutating 
the necklace and canonicalizing them to their lexicographical min-
ima. For example, if an observed edge pattern for (6,3) chirality 
reads “100000011”, then by rotating the longest consecutive se-
quence of six “0”-s to the front, the canonicalized edge pattern 
“000000111” is recovered.  

Such “0-1” representation is required to produce faithful statis-
tics since it fills the loophole of the traditional armchair- (A-) and 
zigzag- (Z-) edges representation, which is not an isomorphism 

from the “A-Z” strings to the atomic structures. For edge patterns 

with 𝑖 < 𝑚 A-edges, the 𝑖 anti-armchair sites can be nonadjacent to 
their A-edges, and the Z-edges can align differently with respect to 
the tube axis. This is more obvious in the “0-1” representation, 
where an A-edge equals to the pattern “10”, and after excluding the 
“10” patterns, all the “0”-s and “1”-s left in the pattern are Z-edges. 
If such Z-edges are not all “0”-s or all “1”-s, the edge pattern might 
not be well defined in the “A-Z” representation. Again using (6,3) 
as an example, in Figure 1a there are six edge patterns with less than 

𝑚 = 3 A-edges, their “A-Z” representation denoted in parentheses. 
Among them, “000011001” and “000001011” both corresponds to 
“ZZZZAZA”, while “000010011” and “000100011” both corre-
sponds to “ZZZAZZA”. By adopting the “0-1” representation, 
these ambiguities can be avoided. 

We then explore the interactions between these edge patterns. 
Etching a C2 molecule from an A-edge can be expressed as “10” → 
“01”, and the reverse process “01” → “10” is the addition of a C2 
molecule to an anti-armchair site. Since all possible reactions that 



 

do not change the edge pattern length (𝑛 + 𝑚) are C2 addition 
and etching, we can find all the A-edges and anti-armchair sites in 
the enumerated edge patterns and perform the reactions on it, thus 
constructing a pair of addition and etching reaction networks as 
two strongly connected directed graphs. Note that the edges with 

lengths longer than (𝑛 + 𝑚) (referred to as anomalous edges here-
after), which are crucial for the growth of near-zigzag SWCNTs, are 

temporarily not considered. Therefore, chiralities such as (𝑛, 0) 

and (𝑛, 1) are effectively excluded from our discussions. 

Having obtained the reaction networks, we should be able to 

predict the steady-state distribution 𝐩ஶ  of the master equation 

d𝐩௧ d𝑡⁄ = 𝑅𝐩௧  by d𝐩ஶ d𝑡⁄ = 0 = 𝑅𝐩ஶ . Here the transition 

matrix 𝑅 = 𝑄ା + 𝑄ି − diag{𝟏୘(𝑄ା + 𝑄ି)} is built from the two 

networks, 𝑄ା for C2 addition reactions and 𝑄ି for C2 etching reac-
tions, and their strongly connectedness guarantees the uniqueness 

of 𝐩ஶ
21. Nonetheless, our first attempt is to avoid the rate constants 

and approximate the 𝐩ஶ with Boltzmann distributions of the edge 
energies. Such edge energies are approximated as the sum of the 
atomic energies of all edge atoms, which are readily available from 
the MLFF. However, the total edge energies display fluctuations 

magnitudes larger than 𝑘୆𝑇 for each pattern, and their averages do 
not follow the Boltzmann distribution (Figure S1). We thus suggest 
that the edge energies might not be defined in such a way. It should 
be more convenient to work directly on the environment-
dependent reaction rates rather than formulate an energy function-

al, especially when the edge pattern breaks the (𝑛 + 𝑚) length 
constraint. 

Consequently, we continue to build the full transition matrix by 
assigning rate constants based on simple assumptions. We before-

hand define the excess chemical potential Δ𝜇 = 𝜇ୗ୛େ୒୘ − 𝜇େ, 

where 𝜇ୗ୛େ୒୘  is the carbon chemical potential in an SWCNT, and 

𝜇େ is the carbon chemical potential in the catalyst. We first assume 

that, at zero Δ𝜇, the reactions that do not change the edge pattern 

have equal addition and etching rates 𝑘଴ = 𝐴଴ exp(−𝛽Δ𝐺‡), 

where 𝛽ିଵ = 𝑘୆𝑇, 𝐴଴ is the preexponential factor, and Δ𝐺‡ is the 

activation free energy in the transition state theory. At finite Δ𝜇, 

they can be multiplied by a factor of 𝜆ఓ

୼௜ഋ = exp(−Δ𝑖ఓ𝛽𝛼(2Δ𝜇)), 

where Δ𝑖ఓ = 1 denotes addition, Δ𝑖ఓ = −1 denotes etching, and 

0 ≤ 𝛼 ≤ 1 is the transition state coordinate stated in Bell-Evans-
Polanyi principle. We further assume that, for reactions that change 
the edge pattern, their rate constants are multiplied by modifiers 
depending on the surrounding atoms of the reaction site. Current-
ly, we consider up to four neighboring atoms on each side of the 
site, and the modifiers are determined by the change of the number 

of A-edges 𝑖୅ and A|Z junctions 𝑖୅|୞ in the local structure during 
the reaction. The modified rate of the reaction is thus 

𝑘଴𝜆ఓ

୼௜ഋ𝜆୅
୼௜ఽ𝜆

୅|୞

୼௜ఽ|ౖ
 where 𝜆୅ > 1 and 𝜆୅|୞ ≾ 1, thus being a four-

parameter model. The intuition behind this assumption is that A-
edges have better contact with the catalyst than Z-edges due to the 
absence of dangling bonds, and A|Z junctions make the edge “jag-
ged” which result in poor contact. Further elaborations to this con-
cept are presented in the Methods section of the Supporting In-
formation. 

We then put this growth model to a quick test by fitting it to a 
steady-state edge pattern distribution with (6,3) chirality, of which 
the MD simulation setup is described in the next section. Since its 
reaction networks in Figure 1a does not contain self-loops, it 
should be ideal for us to compare the predictions to the reaction 

incidence statistics (Figure 1b, other chiralities in the Appendix I of 
the Supporting Information). It can be seen that this analytical 
growth model, albeit simple, accounts for the underlying dynamics 
decently. 

Edge pattern statistics from MLFF-driven MD simulations. 
Statistical analysis of the nucleation and the growth process re-
quires hundreds of simulations which can extend to microsecond 
timescales, so it is crucial to trade off accuracy against efficiency. 
For our cobalt-carbon MLFF, we choose the DeepPot-SE model as 
implemented in the DeepMD-kit package22–24 among available 
codes, noting its exceptional parallel performance for GPU-based 
MD simulations. To accelerate the development of this MLFF, we 
employ a home-built active learning workflow similar to existing 
methods like DP-GEN25, which enable us to construct the MLFF in 
a data-efficient way. Starting from an initial training set with per-
turbed structures of different cobalt and carbon allotropes, we ob-
tain the final dataset containing 6,523 structures with 529,211 at-
oms (Figure S2). To test the generalization ability of the model 
architecture, 11-fold cross-validation is performed on the final da-
taset, with mean energy and force RMSE of 8.4 meV / atom and 
0.28 eV / Å, respectively. Physically motivated validations of the 
MLFF including equations of states of carbon and cobalt allotropes 
and melting point simulations of bulk elemental cobalt are also 
performed (Figure S3-S5). 

Having obtained the MLFF, we then carry out large-scale MD 
simulations of the deposition process. We use the icosahedral Co55 
catalyst throughout the work and deposit atomic carbon on its 
surface with a slow rate of one carbon atom per 2 ns, after a faster 
deposition with a rate of one atom per 0.1 ns to enhance the nuclea-
tion. Trajectories are collected at a 20 ps interval to save disk space. 
Nucleated nanotube caps are allowed to freely evolve until they 
form five or more defect-free hexagon layers, or a defect trapped in 
the nanotube wall is at least five hexagons away from a cap-forming 
pentagon or heptagon. For nanotube caps with diameters under 1.0 
nm, cap-forming pentagons are usually less than two hexagons 
away from each other. Therefore, the curvature at the stopping 
location should be close to that of its corresponding bulk SWCNT. 

We perform all simulations at 1500 K, and a total of 210 cases are 
collected according to the above criterion. Among these cases, 34 
cases with various chiralities are allowed to evolve for at least ten 
layers of defect-free hexagons (referred to as “ten-layer” trajectories 
hereafter) while being defect-free, their diameters spanning from 
0.61 nm to 0.95 nm (Figure 2a and Figure 3a). Excluding near-

zigzag SWCNTs of which 𝑚 = 0, 1 and SWCNTs with diameters 
larger than 0.9 nm, we perform edge pattern statistics on the 20 
cases left and fit our growth model to these statistics, the (6,3) tra-
jectory in the previous section included. The constant deposition 
rate used in our simulations can actually relate to a constant excess 

chemical potential Δ𝜇 < 0, since they both should correspond to a 

constant growth rate. Still, the Δ𝜇 is not the same for different chi-

ralities, and the base rate constant 𝑘଴ = 𝐴଴ exp(−𝛽Δ𝐺‡) is likely 
not the same either, and we expect them to depend on the diameter 
of the SWCNT. Although these two quantities barely affect the 
edge pattern distribution, we can extract them by fitting the model 

with another two observables: the total reaction incidence 𝑓 =

𝟏୘(𝑄ା + 𝑄ି)𝐩ஶ  and the growth rate 𝑟 = 𝟏୘(𝑄ା − 𝑄ି)𝐩ஶ . 

Then the total objective function 𝐽ൣ𝑘଴, 𝜆ఓ, 𝜆୅, 𝜆୅|୞൧ should be 

𝐽 = − ෍ 𝑝ஶ,௝ ln �̂�ஶ,௝

௝

+ 𝑤ଵ൫𝑓 − 𝑓መ൯
ଶ

+ 𝑤ଶ(𝑟 − �̂�)ଶ 



 

 

Figure 2. Edge pattern statistics and predictions from the growth model. (a) The 17 selected single-walled carbon nanotubes (SWCNTs) with small-
er diameters among the 34 selected ones grown on the Co55 catalyst using our developed machine learning force field (MLFF). These SWCNTs are 
allowed to evolve for at least ten layers of defect-free hexagons for detailed analysis. Pink (grey) spheres are cobalt (carbon) atoms, and pentagons 
(heptagons) are colored blue (red). (b) Edge pattern statistics (bars) derived from 10 of the above trajectories along with the fitted predictions from 
the growth model (lines with markers). The handedness is unified for clarity. Edge patterns are represented in the “A-Z” representation if possible. 

where hatted variables denote predictions from the model, 𝑟 =

0.25 nsିଵ is the target growth rate or correspondingly the deposi-

tion rate counted in C2 dimers, 𝑓 is the target total reaction inci-

dence estimated by counting changes in edge patterns, and 𝑤ଵ,ଶ are 
weight factors set to 1 ns. The estimated total reaction incidences 
are rescaled by letting the net addition frequencies match the 
growth rate of 0.25 ns–1 so that the insufficient sampling is alleviat-
ed.  

We display the most occurring edge patterns in Figure 2b and 
Figure 3b along with the fitted predictions from the growth model. 
As can be seen, the model describes the distributions of small di-

ameter SWCNTs with 𝑑୲ less than ~ 0.82 nm very well, and (𝑛, 2) 
SWCNTs included in the statistics are also well fitted regardless of 
their near-zigzag nature and large fraction of anomalous edges. It 
can be seen that edge patterns with rotational symmetries, such as 
“ZAZAZA” for (6,3) and “ZAAZAA” for (6,4), occur much less 

often than their asymmetrical counterparts with the same number 
of Z- and A-edges. This phenomenon, described as the “conven-
tional interface” tends to be “kinetically unstable” by Penev et al.5, 
turns out to be of entropic origin, as these edges have less rotational 

degeneracy than their counterparts ((𝑛 + 𝑚)/𝑑  versus (𝑛 + 𝑚), 

where 𝑑 is the highest order of the rotational symmetry of the edge 
pattern). This is also evident from the rate constants of the reaction 
networks, as rate constants pointing outwards from these edge 

patterns are all multiplied by the factor 𝑑, regardless of adding or 
etching.  

Still, it can be seen that the quality of fit decreases with the diam-
eter. We thus suspect that the simulation time is not enough or the 
sampling interval is too long, since the number of edge patterns 
grows combinatorically with the chiral indices. For the two (7,6) 
SWCNTs with diameters of 0.88 nm, inconsistencies in the orders 



 

 

Figure 3. Similar to Figure 2, but for the structure and edge pattern distributions of the set of SWCNTs with larger diameters. 

of the observed edge patterns between these two cases can be no-
ticed, though the prevailing edge pattern “ZAAAAAA” remains the 
same. This is inevitable under limited computational resources, and 
we speculate that even a several-microsecond trajectory might not 
suffice when we need to distinguish between very similar probabili-
ties of occurrence. Considering the simplicity of the growth model, 
further improving the statistics might be worthless unless a much 
more detailed model is developed. 

The fitted model parameters are shown in Figure 4, assuming 

𝛼 = 0.5 in the Bell-Evans-Polanyi formalism: Since the reactant 
and the product have the same structure in our baseline reaction 

with the rate constant 𝑘଴, under Δ𝜇 = 0 or equivalently Δ𝐺 = 0 it 
should be natural to identify the transition state at the center of the 
reaction coordinate. Thus, we can define the excess chemical po-

tential by Δ𝜇 = −𝑘୆𝑇 ln 𝜆ఓ , the A-edge free energy by Δ𝐺୅ =

−2𝑘୆𝑇 ln 𝜆୅ , and the A|Z junction free energy by Δ𝐺୅|୞ =

−2𝑘୆𝑇 ln 𝜆୅|୞. As mentioned in the previous section, one would 

intuitively expect that Δ𝐺୅ < 0 and Δ𝐺୅|୞ > 0. As the diameter 

increases, however, it can be seen in Figure 4a that Δ𝐺୅|୞ ap-
proaches zero, and for some chiralities it even crosses over to nega-

tive values. Correspondingly, the edge patterns where A-edges and 
Z-edges are segregated become less and less prevailed over the 
other ones (Figure 2b and Figure 3b). This phenomenon can be 
attributed to insufficient statistics, but an alternative explanation is 
also possible: the growth-mode crossover from perpendicular to 
tangential26–28. For large diameter SWCNTs, their more tangential 
interface between the edge and the catalyst ensures better contact 
irrespective of the edge pattern, thus the A|Z junctions are not too 
penalized in terms of local free energy. 

Another interesting observation is that for large diameter 
SWCNTs, their growth rate per anti-armchair site is inherently 

slower. Though the base rate constant 𝑘଴ is still likely underesti-

mated, it is clear that 𝑘଴ decreases with the diameter, which can be 

seen from Δ𝐺‡ = −𝑘୆𝑇 ln 𝑘଴ + 𝑘஻𝑇 ln 𝐴଴  in Figure 4b. This is 
more pronounced when represented in terms of hexagon layers per 
time unit, since the growth rate in C2 units should be further divid-

ed with (𝑛 + 𝑚). And it is natural since larger diameter naturally 

translates to smaller curvature, lower reactivity, and thus smaller 𝑘଴ 

or higher Δ𝐺‡. Therefore, achieving the same growth rate as the 

small diameter SWCNTs, the excess chemical potential (Δ𝜇 < 0) 



 

 

Figure 4. Thermodynamic quantities derived from the fitted models. (a) A-edge free energies and A|Z junction free energies. (b) Relative activation 
free energy of the baseline reaction. (c) Chemical potential (violet line) and excess chemical potential (arrows), showing that all diameters are pre-

ferred in the simulations. 𝜀ୗ୛େ୒୘ (blue line) is the energy of the atoms in single-walled carbon nanotubes (SWCNTs) which is used as an approxi-
mation to the chemical potential. The dashed line and the shades demonstrate the harsher excess chemical potential experienced by SWCNTs with 

different diameters under a constant chemical potential. All solid lines in (a-c) are fitted against 𝑦 = 𝑎଴ + 𝑎ଵ/𝑑୲
ଶ. 

applied to large diameter SWCNTs is lower. This may affect the 
observed chirality distribution, which we will discuss in the next 
section. 

Chirality preference from defect kinetics. Regarding the 210 
MD trajectories collected at 1500 K mentioned above, 209 of them 
developed towards 42 different chiralities at five hexagon layers as 
in Figure 5a, displaying a very broad distribution. We speculate that 

this is because all chiralities are intrinsically preferred, i.e., Δ𝜇 < 0 
in terms of excess chemical potential, which may not be the case 

when the external chemical potential 𝜇େ is constant. At constant 

𝜇େ, the excess chemical potential is approximately Δ𝜇 = 𝑐଴ 𝑑୲
ଶ⁄ −

𝜇େ when measured from the energy of a carbon atom in graphene, 

where 𝑑୲ is the diameter of the SWCNT, and 𝑐଴ is the out-of-plane 

elastic constant of graphene29. In Figure 4c, we use a 𝜇େ,ୢୣ୫୭ =

0.17 eV to demonstrate how the experienced Δ𝜇 in experiments 
differs from that in our simulations. For nanotube caps with too 
small diameters, even if they successfully nucleate from the exces-
sively supersaturated carbon dissolved in the catalyst, they actually 

experience a Δ𝜇 > 0 at equilibrium. Therefore, they should be 
etched, re-nucleate to larger nanotube caps, or form heptagon de-
fects to increase their diameters. On the other hand, nanotube caps 

with too large diameters receive Δ𝜇 much lower than that in simu-
lations. They may grow too fast to heal the extra pentagons formed 
at the interface, encapsulating them and turning into conical struc-
tures with shrinking diameters. We therefore expect a much nar-
rower diameter distribution in such conditions.  

Nonetheless, the two scenarios just mentioned are actually ob-

served in our simulations since our 𝜇େ is still kind of “adaptive”. 
There are two of our SWCNTs with ultra-small diameters display-
ing the first scenario, their chiralities being (6,2) and (7,2). After 
forming multiple hexagon layers, their interfaces suddenly become 
tilted with one side of the wall being etched, increasing the circum-
ference of the interface. For the second scenario there are even 
more examples. We can collect the last defined chirality after the 
chirality has been once defined for all 210 nanotube caps, as dis-
played in Figure 5b. Comparing this “zero-layer” distribution to the 
“five-layer” one, it can be seen that the “zero-layer” distribution is 
apparently consistent with the kinetic nucleation hypothesis by Xu 
et al., where the nucleation probability hardly depends on the chiral 
angle12. Actually, this “zero-layer” distribution may serve as the 
boundary of the nucleation phase in the strict sense, as the chirality 
distribution at the preferred diameter roughly agrees with the 

number of the nanotube caps containing only pentagons and hexa-
gons (Figure S6). However, the “five-layer” distribution display a 
huge shift mainly toward smaller diameters, and this is mostly due 
to the subsequent formation of shrinking cones after the strict nu-
cleation phase. We thus suggest that the nanotube-catalyst interface 
should not be that “smart” to know how many pentagons are en-

capsulated in the SWCNT — The chemistry should be local at the 
interface, depending only on the edge pattern. 

As for the shrinking cones, obviously they cannot shrink forever. 
There are two basic mechanisms to increase the interface circum-
ference, which we name as diameter control mechanisms. The 
type-I mechanism is to try healing the defect by etching on the side 
of the wall and forming a tilted interface, just like the aforemen-
tioned ultra-small diameter SWCNTs. This may not succeed 
though, as the etching can fail to target the defect, leaving it in the 
wall permanently. The type-II mechanism is to form a heptagon 
defect to compensate for the large curvature, switching the chirality 
in progress. Demonstrative snapshots for these mechanisms are 
displayed in Figure 5c-e. Also, the formation of the cap-forming 
pentagons (or the chirality-switching pentagons) can be regarded 
as controlling the diameter toward the smaller side, especially when 
there are insufficient pentagons, and thus the cap is expanding in 
diameter but cannot expand forever.  

Apart from providing such insights into diameter control mech-
anisms, the MD simulations enlighten us to realize the connection 
between the chirality preference and the defect kinetics, as diame-
ter control is also a form of chirality control. We thus proceed to 
analyze the kinetics of the pentagon defects of all the 34 “ten-layer” 
trajectories. As stated above, all the “ten-layer” trajectories selected 
are growing steadily without defects in their hexagon walls 
throughout their timespans. However, in other cases, defects can 
stay until they are deep inside the nanotube wall, and finally lead to 
diameter control mechanisms and possibly chirality switching. 
Previously, Hedman et al. fitted their observed distribution of de-

fects with a power-law function, i.e., 𝜑ఛ = 𝑔଴𝜏ି௚భ , where 𝑔଴ and 

𝑔ଵ  are constants15. By fitting it against the mean distribution from 
the “ten-layer” trajectories, we do reproduce this behavior, obtain-

ing 𝑔ଵ ∼ 2 (Figure 6a). This makes us question the actual mecha-
nism of defect healing, since no simple rate law can produce this 
behavior. Basically, most of the nascent pentagon defects can be 
classified into three types by the number of its surrounding hexa-

gons 𝑙 = 2,3,4 (Figure 6b). From our statistics in Figure 7a, these 



 

 

Figure 5. Chirality distributions and observed diameter control mechanisms that resolve small circumferences of the nanotube-catalyst interface. (a) 
“Five-layer” distribution, taken at five defect-free hexagon layers for all cases, except one case that has finally detached from the catalyst. Three chirali-
ties are not included and are listed as follows: (12,4): 1, (13,1): 1, (13,4): 2. (b) “Zero-layer” distribution, taken at the end of the “strict” nucleation 
phase. (c) Type-I mechanism with (7,2) chirality. (d) Type-I mechanism with (7,5) chirality. The extra pentagon in the wall is successfully healed. 
(e) Type-II mechanism of a transition from (likely) (8,4) to (8,3). The encapsulated pentagon is not healed, and a heptagon is formed to compensate 
for it. Pink (grey) spheres are cobalt (carbon) atoms, and pentagons (heptagons) are colored blue (red) in (c-e). 

three types of defects decay differently. 𝑙 = 2 defects are formed 
over consecutive Z-edges, can be healed quickly, and can seldom 

lead to further reactions; 𝑙 = 3 defects are hosted on anti-armchair 

sites, usually being intermediates of C2 addition reactions; 𝑙 = 4 
defects are hosted on anti-zigzag sites in anomalous edges. In our 
 

 

Figure 6. (a) Mean defect lifetime distribution of the 34 trajectories. 
Error bars denote the range, and the dashed line is fitted against a pow-
er-law function. (b) Three classes of pentagon defects classified by 
their number of shared edges l = 2,3,4 with the hexagons. 

system, 𝑙 = 4 defects heal much slower than 𝑙 = 3 defects, result-
ing in a larger chance of encapsulation, which is probably due to the 
relatively perpendicular contact lifting the defect out of the nano-
tube-catalyst interface. Therefore, the observed power-law decay is 
actually composed of multiple processes with different nature.  

Taking these observations into account, a crude, linear model of 
pentagon defects without considering the geometries should be: 
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⇄
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௞బష
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௞బశ
⇄
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dସ + 2Cଶ

௞బశ
⇄

௞బష

⋯ 

where d௟  denotes the defect surrounded by 𝑙 = 2,3,4 hexagons, 
upward (downward) arrows denote defect generation (healing), 

and 𝑘଴ା ∼ 𝑘଴ି ∼ 𝑘଴ is the rate constant of hexagon addition or 
etching near equilibrium. The average defect healing rate constants 

of 𝑙 = 2,3,4 defects for all chiralities are 𝑘ୢଶ, 𝑘ୢଷ, and 𝑘ୢସ, respec-
tively, and the defect generation rate constants are temporarily 
ignored here. By solving this defect model numerically with rejec-
tion-free kinetic Monte Carlo simulations, the power-law behavior 
can be reproduced as in Figure 7b. For each initial state, we per-
form 106 simulations with different random seeds, truncating the 
reactions to 20 C2 additions and setting the lifetime limit to 500 ns 
so that infinite lifetimes are avoided. The lifetimes obtained are 



 

 

Figure 7. Statistics of the pentagon defects, including lifetimes and occurrences. (a) Lifetime distribution of the pentagon defects, classified by their 

surrounding hexagons 𝑙 = 2,3,4 when they form.  (b) Fitted predictions of the lifetime distributions from our defect model. Bars are results from the 
kinetic Monte Carlo simulations, and solid lines are the exact numerical results. (c-d) 99% percentile lifetime of the defects versus the diameters (c) 
and the chiral angles (d). Dashed lines are only intended as visual aids. (e-f) Ratio of the occurrences (e) and the raw occurrences (f) of different 

classes of defects versus the chiral angles fitted against 𝑦 = 𝑎଴𝜃 + 𝑎ଵ. 

discretized to multiples of 20 ps in the histogram to match the sam-
pling interval in MD simulations. The rate constants are fitted with 

Bayesian optimization, being 𝑘଴ = 1.63 nsିଵ, 𝑘ୢଶ = 104 nsିଵ, 

𝑘ୢଷ = 17.7 nsିଵ, and 𝑘ୢସ = 3.63 nsିଵ. The value of 𝑘଴ is com-
parable to that from the growth model. The exact numerical distri-
butions are also calculated alongside the histograms by integrating 

the master equation d𝐩ఛ,ୢ d𝜏⁄ = 𝑅ୢ𝐩ఛ,ୢ and taking the time de-

rivative as 𝜑ఛ = d(1 − 𝟏୘𝐩ఛ,ୢ) d𝜏⁄ , where the subscript d denotes 

quantities for this defect model. It can be seen that while at 𝜏 → 0 

the observed power-law divergence of 𝜑ఛ is actually due to aliasing 

from finite-time sampling, the large 𝜏 behavior is consistent with 
the power law. We thus confirm that the chirality-switching penta-
gon defects arise from just a one-step side reaction between the 
normal C2 addition and etching reactions. 

Finally, we analyze the chirality-dependent behavior of the de-
fects to unveil their potential effects on the chirality distribution. It 
is obvious from the model that at a fixed temperature, larger diame-

ter leads to lower Δ𝜇 or equivalently larger 𝜆ఓ , consequently in-
creasing the probability of chirality switching. Together with the 

inherently slower 𝑘଴ for large diameter SWCNTs, this is possibly 
reflected in the positive correlation between the defect lifetimes 
and the diameters (Figure 7c) and should be more pronounced at 

constant 𝜇େ. To explain the chiral angle distribution against near-
zigzag SWCNTs at the optimal diameter, we consider the chiral 

angle dependence of the occurrence of 𝑙 = 3 and 𝑙 = 4 defects, 

since 𝑙 = 2 defects hardly evolve into encapsulated defects as dis-
cussed above. For near-zigzag chiralities, their growth depends 

more on anomalous edges with anti-zigzag sites, hosting more 𝑙 =

4 defects. As the chiral angle increases, more anti-armchair sites are 

available, thus 𝑙 = 3 defects are favored over 𝑙 = 4 defects (Figure 

7e). Though the total occurrences of 𝑙 = 3 and 𝑙 = 4 defects in-

crease with the chiral angle (Figure 7f), the faster healing rate of 

𝑙 = 3 defects in our system causes the negative correlation be-
tween the defect lifetimes and the chiral angles (Figure 7d), result-
ing in the preference toward near-armchair chiralities. 

CONCLUSION 
Through our edge pattern formalism and our growth model, we 

successfully reproduce the VLS growth kinetics in our MLFF-
driven MD simulations on cobalt catalysts, providing concrete 
evidence that C2 addition and etching are the major contributing 
reactions except for near-zigzag SWCNTs. The thermodynamic 
parameters that govern the growth process are extracted, laying 
solid foundations for the operando modeling of the SWCNT for-
mation. 

More importantly, our simulations on cobalt catalysts reveal the 
plausible mechanisms of diameter evolution and control. The for-
mation and resolution of defects drive the chirality distribution 
toward a steady state. In our growth model, the defect pentagons 
share similar origin with the cap-forming pentagons, and their ki-
netics is also dependent on the chirality. This prompts us to rethink 
the definition of nucleation, since defects may occur immediately 
after nucleating a conventional cap. While an underlying thermo-
dynamic theory of such kinetics is not clear at the moment, they 
can definitely generate chirality preference. By applying our work-
flow to other elemental or alloy systems, one may discover different 
defect kinetics and potentially those leading to special chirality 
distributions. Future extensions to this workflow might involve the 
probability of chirality switching and growth termination per C2 
addition, therefore providing the decay exponents for Schulz-Flory-
like macroscopic modeling30,31. Our present work thus paves the 
way for future studies on the growth kinetics and the rational de-
sign of catalysts for chirality-selective growth of SWCNTs. 
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