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Heat diffusion‑related damping 
process in a highly precise 
coarse‑grained model for nonlinear 
motion of SWCNT
Heeyuen Koh1*, Shohei Chiashi2, Junichiro Shiomi2 & Shigeo Maruyama2,3*

Second sound and heat diffusion in single‑walled carbon nanotubes (SWCNT) are well‑known 
phenomena which is related to the high thermal conductivity of this material. In this paper, we have 
shown that the heat diffusion along the tube axis affects the macroscopic motion of SWCNT and 
adapting this phenomena to coarse‑grained (CG) model can improve the precision of the coarse‑
grained molecular dynamics (CGMD) exceptionally. The nonlinear macroscopic motion of SWCNT in 
the free thermal vibration condition in adiabatic environment is demonstrated in the most simplified 
version of CG modeling as maintaining finite temperature and total energy with suggested dissipation 
process derived from internal heat diffusion. The internal heat diffusion related to the cross correlated 
momentum from different potential energy functions is considered, and it can reproduce the 
nonlinear dynamic nature of SWCNTs without external thermostatting in CG model. Memory effect 
and thermostat with random noise distribution are not included, and the effect of heat diffusion 
on memory effect is quantified through Mori–Zwanzig formalism. This diffusion shows perfect 
syncronization of the motion between that of CGMD and MD simulation, which is started with initial 
conditions from the molecular dynamics (MD) simulation. The heat diffusion related to this process 
has shown the same dispersive characteristics to second wave in SWCNT. This replication with good 
precision indicates that the internal heat diffusion process is the essential cause of the nonlinearity 
of the tube. The nonlinear dynamic characteristics from the various scale of simple beads systems are 
examined with expanding its time step and node length.

Thermal energy is highly important for the dynamics of systems on the nm–µ m scale. Understanding how 
random  fluctuation1–5 from thermal energy operates the dynamics in this range could expand the capability 
of the simulation model which should compromise the detailed dynamics from atomic scale  phenomena3,6,7. 
The effort to parameterize and reveal the detailed mechanism for hierarchical  structures8–15 often reaches con-
tinuum scale expression as an effective  descriptor16–20. The validation of these trials has been demonstrated its 
capability to delineate the role of thermal motion in macroscale through the comparison of phonon dispersion 
 relations13,18,19, which shows the coarse-grained description can manage thermal condition in atomic scale. The 
wide range of CG particles and time steps often leads to a memory effect in the equations of motion and behavior 
as a non-Markovian  system21. The development of theoretical approaches to practically treat the memory effect 
and random noise distribution in more precise procedures for various simulation scales and models is a subject 
of ongoing  research21–23.

Coarse-grained simulations of single-walled carbon nanotubes (SWCNTs) have been used to study the mor-
phology of complex composites for theoretical and practical applications. Quantitative validation of coarse-
grained (CG) modeling has been attempted using various methods, mostly for static  characteristics2,24–29. The 
parameters for coarse graining SWCNTs have been fully explored for various SWCNT  sizes2,24,25, and the dynamic 
characteristics in acoustic dissipation arising from global deformation have been  investigated24,30. Moreover, 
CGMD simulations suggesting the structure of the SWCNT complex have been performed to determine the 

OPEN

1Mechanical and Aerospace Engineering Department, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 
Seoul 08826, South Korea. 2Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, 
Bunkyo-ku, Tokyo 113-8656, Japan. 3Energy Nano Engineering Lab., National Institute of Advanced 
Industrial Science and Technology (AIST), Ibaraki 305-8564, Japan. *email: hy_koh@snu.ac.kr; maruyama@
photon.t.u-tokyo.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-79200-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |          (2021) 11:563  | https://doi.org/10.1038/s41598-020-79200-6

www.nature.com/scientificreports/

thermal conductivity and mechanical properties of composites, which are strongly dependent on the morphol-
ogy characteristics of the  composite26,27,31. For example, CGMD simulations were used by Won et al.31, for CG 
modeling of a vertically aligned SWCNT forest (VA-SWCNT) obtained by the top-down method. The use of 
the structure directly duplicated from scanning electron microscopy (SEM) images enabled successful simula-
tion of the role of each structure type in the VA-SWCNT forest. Further research on multiscale modeling that 
showed good efficiency and precision for the VA-SWCNT  forest28,29 proved that even the dynamic replication 
of VA-SWCNTs in chemical vapor deposition (CVD) and its further  processing32 are feasible.

The CG modeling for saving the computational expenses of atomic simulation directly means that the trial 
should lose its detailed dynamic characteristics caused by such condition. Most progressed CGMD simulation 
for morphology, such as VA-SWCNT  forest28,29 or  buckypaper26,27, has a cylinder shaped CNT to keep realistic 
dynamic and structural characteristics with taking computational expanse. Some exceptions are dissipative 
particle dynamics (DPD) modeling with  polymers33–35 and the mathematical random network of the sparse 
 entanglement36. In other studies as  well13,37, composing coarse grained structure to maintain the dynamic fea-
tures of individual molecule at certain level is essential to enhance the methodology to analyze in multiscale 
 systems26,38,39.

Recently, based on MD simulations, Koh et al.40 reported that the bending motion of SWCNTs under thermal 
equilibrium conditions exhibits nonlinear characteristics. The whirling motion of SWCNTs appears repeatedly 
in the course of conventional planar bending motion. This whirling motion also changes its rotational direc-
tion in each appearance. Successful CG modeling of SWCNTs should show the same motion characteristics as 
 reported40,41. Any molecule which has one dimensional shape with fixed ends is suspected to have the similar 
nonlinear macroscopic motion characteristics according to the theoretical approach. The research scope of 
this paper is focused on a better algorithm for the simple beads model, which is the most simplified version 
of SWCNT. Clear understanding on the role of thermal randomness to macroscopic motion would reduce the 
complexity of dynamics into a simple beads system and it could be validated through CGMD simulation. The 
result of this trial would give the causality of nonlinear dynamic characteristics in SWCNT so that it could be 
manageable at some level of engineering.

Coarse‑grained modeling for nonlinear motion in SWCNTs. The key feature of the nonlinear mac-
roscopic motion in SWCNTs is the motion type  exchange40–42. Each motion type as represented in Fig. 1 should 
appear repeatedly if the designed CG modeling has dynamic characteristics identical to those obtained in several 
atomic systems in  simulations40,41 and  experiments43. Judging by the high Q factor of SWCNTs, the use of quad-
ratic functions to model the bond length and angle potential energy terms as harmonic potentials appears to be 
reasonable, but it does not ensure the nonlinearity of the motion type exchanges observed in the atomic-scale 
system since it is defined in a plane.

The governing equation for nonlinear  bending40 describes the motion characteristics of a SWCNT that is 
coarse-grained along the tube axis and its analytic solution provided the nonlinearity including motion exchange, 
as shown in the MD simulation. For this nonlinear bending equation derived from Green–Lagrangian strain 
definition, the same strain definition can be applied to the coarse-grained model. According to the governing 
 equation40, the nonlinear behavior results from the combination of the bending on two perpendicular planes 
and lengthwise deformation described by a single quadratic function. Thus, the Hamiltonian for SWCNTs that 
is identical to the Green-Lagrangian strain can be expressed as follows:

(1)HMD

(

x1, . . . , xn, p1, . . . , pn
)

=
1

2

pTp

m
+�MD(x1, . . . , xn),

Figure 1.  Visualization of motion from MD simulation. The average coordinate of each carbon ring 
perpendicular to tube axis is amplified by a factor of 5 to clearly visualize the motion: (a) planar bending 
motion, (b) nonplanar motion.
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where xi and pi are the displacement and velocity of the coarse-grained particle, respectively. wl and wθ are the 
variables for bond length and angle deformation. The definition on these variables are in Supplementary Info. 
A. The angle definition in Supplementary Info A regards the SWCNT as an Euler beam. For the target system 
which is out of the limit, additional angle effect should be  added44 to make it as Timoshenko beam model. �G.E. 
is the potential energy given by the Green-Lagrangian strain definition, and �int is the internal energy of the 
coarse-grained particle that is ignored in the governing equation. �G.E. is defined as the quadratic function of the 
combination of bending, i.e., angle deformation and its deformation along the bond length. A full description 
of this expression is provided in Supplementary Info. A.

Ideally, a coarse-grained model should be composed of two independent Hamiltonian system for Stackel 
 condition45, indicating that the momentum must be separated into two independent variables according to each 
potential energy type that is defined for each type of deformation.

where HL and Hθ are the Hamiltonians for the bond-length and angle deformations, respectively. pL and pθ are 
the momenta for the two types of deformation.

However, in the case of coarse-grained molecular dynamics (CGMD) using a simple bead system, there is 
no momentum separation for each type of potential energy, which are defined separately so that there are only 
one type of momentum. We can separate the integrated value for each Hamiltonian:

where pi is the velocity of ith unit mass in CGMD. p
′ℓ
i  and p

′θ
i  are the momenta along the angle and bond length 

in the CGMD simulation, respectively. They are the scalar components of total velocity so that they share the 
unit vector êpi , which is the direction of total velocity pi . The components of pi from p

′ℓ
i  and p

′θ
i  are denoted as pℓi  

and pθi  , with another unit vector set {êpℓ , êpθ } . The components of this set are the direction of each displacement 
variable, ℓ and θ , respectively.

It is important to precisely define the direction of pi and q̇ , êq̇i . Due to the time integration and sharing of the 
momenta, the direction of the momentum of each component is designated at a certain moment through the 
bond length ℓ and angle θ as defined in Eq. (9), which are the variables of the potential functions at each atom. 
The unit vectors are the functions of the bond length ℓ and angle θ , and decomposition of the momentum pi into 
pi,ℓ and pi,θ in orthogonal directions should be varied at every point in time.

Results
Influence of unseparated momenta. For a CG particle which is experiencing the shared momenta, as 
written in Eq. (9), the modified Hamilton’s principle becomes:

with

when we assume that Hθ and Hℓ are two independent Hamiltonians, the least action principle should be valid 
for each with q̇ , which is the change in the displacement that a mass experienced in the phase space on both Hθ 
and Hℓ , simultaneously.

(2)
dxi

dt
=
∂H

∂pi
,

(3)
dpi

dt
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∂H

∂xi
,
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2,
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Using Eq. (9), it is possible to obtain the infinitesimal volume in the phase space for each type of Hamiltonian. 
We note that the momentum pℓi  and pθi  are the function of displacement variables as shown in Eq. (9) so that the 
equations of motion are developed with additional damping term consequencially. For example, the volume of 
Hℓ at a certain moment t is:

where γ and γ ′ are for the proportionality of q̇θi  and pℓi  to qℓi  in Hℓ in Eq. (12) from the Taylor expansion, respec-
tively. The differential is not vanishing due to the definition of unit vector in Eq. (10). We note that the damping 
in Eq. (15) has two different terms proportional to different types of momentum. The CGMD simulation with 
initial displacement and velocity from the MD simulation without extra thermostatting becomes the system 
calculated using the equation of motion in Eqs. (13)–(14). The result is given in Supplementary Info. A. Naturally, 
the simulation without external thermostatting would experience the damping in Eq. (14), and it is not adjusted 
to a specific temperature as given by the initial condition so that the temperature of CGMD simulation is in its 
equlibrium at approximately 1000 K, as shown in Supplementary Info. A. γ and γ ′ could be assumed to be time-
varying variables, but we set their values to be constant in this study. Equation (15) makes the volume in phase 
space nonconservative with additional damping on pi and qi.

Memory effect from two independent Hamiltonians. To quantify the consequence of the unsepa-
rated momentum in Eq. (9) and its resultant, the damping in Eq. (14), the projection operator method used in 
the Mori–Zwanzig formalism is adapted from Kinjo and  Hyodo46 and  Kauzlaric47. In an atomic system that has 
a microscopic state z in the phase space Ŵ̂(t) = {r̂αi , p̂αi} where ̂rαi and p̂αi are the displacement, momentum and 
the Liouville operator, L, evolves with  time47:

where z0 is the initial state. The coarse-grained model that adapts center of mass (CoM) variables from z has the 
following notation:

where α can be either ℓ or θ in the simple bead system. mα is the mass of an atom. R̂α . P̂α and Mα are the displace-
ment, momentum and the inertia of CG particle, respectively. In the Mori–Zwanzig  formalism46–48, the evolu-
tion of the variables for a coarse-grained particle as a function of a small, microscopic group, Aµ = Aµ(z(t)) , 
is treated using the phase space density fs(Ŵ̂s(t), Ŵ̂s) for Hamiltonian H in the phase space coordinate of coarse 
grained system, Ŵ̂s(t) ≡ {R̂α , P̂α}

46. Ŵ̂s is the corresponding field  variables46.
Dynamic variable g(Ŵ̂(t)) can be defined on fs with the equilibrium distribution �(Ŵ̂) = e−βH/Z . The pro-

jection P for gP(Ŵ̂s(t)) for and Q = 1-P can divide g(Ŵ̂s(t)) and 
(

d
ds

)

Ŵ
fs as:

where

(13)q̇ℓi =
∂H

∂pℓi
,

(14)ṗℓi =−
∂H
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(15)dq
′ℓ
i dp

′ℓ
i =dqℓi dp

ℓ
i

[

1+
(
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)

δt
]

,

(16)ż(t) =Lz,

(17)z =exp(Lt)z0.
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Based on the assumption that the each Hamiltonian is independent, the integration of Eq. (23) is could be 
conducted on the phase space for either one of the Hamiltonian Hℓ or Hθ . The projector P, as well could be vali-
dated in the phase space either of Hℓ or Hθ . The phase space for Hℓ , for example, becomes:

Same condition in Eqs. (21)–(25) should be satisfied for Hθ with fsθ . fsθ and fsℓ are the phase space density 
of the same atomic system but that of different expressions. Since the variables ℓ and θ are independent at each 
moment, the operator P on different phase space density fsθ and fsℓ are as well orthogonal each other. Then, the 
time evolution of fsℓ is defined by its Hamiltonian with the momentum in Eq. (9) and Liouville theorem:

where

could be considered for each Hamiltonian. Ls is Liouville operator and F̂ is the force from the given Hamiltonian. 
P̂ and R̂ are the momentum and displacement of the CG particle as noted in Eqs. (18)–(20) The derivation of 
Eq. (29) has been dealt in the previous subsection for Hamilton’s least action. From the explicit definition of 
damping in Eq. (29), which is the sum of γ P̂α and γ ′q̇θ , we are going to quantify the influence of this damping 
terms in time evolution. Let us suppose that we have only N CG particles in adiabatic condition which are obey-
ing the Eqs. (27)–(29). This means that they are unaffected by other influences such as thermal fluctuations. iLs 
in Eq. (28) can be divided by operator P, with the additional damping γ P̂α ∂

∂P̂
 from the  reference46, and Q, which 

now has a very specific definition, γ ′q̇θ
∂

∂P̂
 . From the definition of Q that is defined explicitly under the assump-

tion of adiabatic condition of the system, the terms for the fluctuation force and memory effect are changed so 
that the equation of motion from the time-evolution for the phase-space density of fsℓ becomes:

where

Nℓ is the number of CG particle involved in the Hℓ . P(Ŵ̂(0),Ŵs) is originally  noted46 as F(Ŵ̂(0),Ŵs) for the fluc-
tuation force from the projection Q without explicit definition as we have shown in Eq. (29). Note that δPQℓ (t) 

(23)

gP
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is δFQσ (t) in the  reference46. It is changed to reveal that the fluctuation arises from the momentum of the other 
Hamiltonian. Subscript ℓ can be changed to θ when the evolution on the fsθ is considered.

More specifically, the memory effect integration, Mℓ which is the second term in Eq. (32) becomes the 
following:

The value of time integration, Mℓ in Eq. (34) has same value as the cross-correlation of these variables in the 
frequency domain:

Mθ (ω) will share the same definition and the value theoretically with Mℓ(ω) . The numerical calculation can 
distort the distribution of cross correlation from the Mℓ slightly according to the finite length of the data and 
initial condition which are involved in calculation. Cross-correlation in the frequency domain is achieved by 
processing the CGMD and MD simulation data. The MD and CGMD simulations are carried out for (5,5) 
8-nm-long SWCNTs, and the cross-correlation calculation is described in the Method section. This quantity of 
Mθorℓ in CGMD simulation in Fig. 2a has a different peak shape from that of the MD simulation whose results 
are averaged as the simple bead system. No significant results have been found in the range below THz for both 
cases. The CGMD simulation results show more distinctive peaks than the MD simulation results. This observa-
tion means that (1) in the case of MD simulations, for the simple bead system with the displacement and velocity 
averaged from the MD results, the influence of the thermal fluctuation or heat bath should be incorporated as 
another dissipation term, which is absent in the definition of CGMD and which makes the momentum in two 
different Hamiltonian independent to each other, and (2) MD simulations have a cross-correlation that is not 
active in the bending frequency range but rather is active in the optical mode range. For the integrity of the 
paper, autocorrelation of the momenta in each Hamiltonian is presented in Supplementary Info. B, and it shows 
non-Markovian characteristics.

Heat diffusion in the general Langevin equation. It is interesting to consider how the thermal ran-
dom motion due to the heat bath can help to obtain a high Q factor of macroscopic motion through establishing 
two independent potential energy surface in equilibrium with the correct level of the cross-correlated state. All 
these complex situations are well summarized by the definition of free energy and irreducible friction for revers-
ible  state49,50. However, it is difficult to define the value at each time step while the simulation is on running.

(34)

− β
∑

α

∫ t

0
ds
〈

[

δPQσ (t − s)
]

×
[

δPQα (0)
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〉

·
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= −β
∑

α

〈[
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0
dsδPQσ (t − s) ·

P̂α(s)

Mα

]

×
[

δPQα (0)
]T

〉

,

(35)Mℓ =

∫ t

0
dsδPQσ (t − s) ·

P̂α(s)

Mα

,

(36)Mℓ(ω) =

∫

dteiωt
∫ t

0
dsδPQσ (t − s) ·

P̂α(s)

Mα

= δPQσ (ω)P̂α(ω).

Figure 2.  Cross-correlation from CGMD and the simple bead model from MD data in the frequency domain. 
The gray line indicates the MD simulation duplicated with all CG particles in the simple bead model; the green, 
blue and red lines are the CGMD results at the 2nd, 5th, and 9th nodes, respectively, obtained (a) without 
damping. The MD simulation results show a rather narrow range of distribution between each CG particle 
compared to the CGMD results. The peak of the CGMD results is close to the delta function, (b) with internal 
heat diffusion. The difference between each node in CGMD is narrowed and the peak at certain frequency is 
diminished compared to (a). The peaks are broadened.
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The effect of the heat bath suggested by Zwanzig in  196151 and described by an additional Hamiltonian Hb rep-
resents the general influence of the collective dynamics from the Hamiltonian system belonging to the individual 
atoms inside the CG particle. From the THz range of cross correlated state in the previous section, we can assume 
that 2p′ℓp′θ from the quadratic form of Eq. (9) is correspondingly from the thermal energy of the heat bath.

It could be presumed that a small amount of the disturbance in the kinetic energy of the CG particle such as 
δKE in THz range which manipulates the macroscopic motion, as being involved in total kinetic energy of CG 
particle, Ktot = KE0 + δKE . If thermal energy from heat bath is affecting the macrosopic motion, phonon modu-
lation at THz could be the reason, whose dynamics is ruled by the second sound which explains the momentum 
and energy balance of  phonons52. Second sound modulation, ∂2u/∂t2 = ∂2u/∂z2 , where z is the variable for the 
nanotube length axis can be considered, with the temperature deviation u which is caused by p′li pi ′θ from the 
quadratic form of Eq. (9) and its diffusion should shown as the collective dynamics from the atomic simulation 
if the second sound is involved. It is a valid observable in the simplified beads model from MD simulation. The 
value of ∂

2p
′ l
i pi

′θ

∂x2
 in Fig. 3a shows dispersive characteristics as explained by Lee and Lindsay in  201752. We can 

confirm that the amount of energy ∂
2p

′ l
i pi

′θ

∂x2
 is diffused as the second sound modulation in atomic simulation.

Instead of building the precise second sound modulation phenomenon in CGMD simulation, we can con-
jecture that the diffusion depends on the a set of macroscopic momentum p′ℓ, p′θ in the way the function of 
the momentum can affect the coarse-grained system in a similar way of second sound modulation. Based on 
the direct proportionality between KE and T, the amount of cross-correlated state equivalent to ∂

2p
′ l
i pi

′θ

∂x2
 can be 

incorporated into the equations of motion for CG particle using the definition of the diffusion equation.The 
system with this diffusion process can be described as follows:

(37)HCG =Hs(X)+Hb(X,Y),

(38)H
(

x1, . . . , xn, p1, . . . , pn
)

=
1

2
�
p2i
m

+�CG(x1, . . . , xn),

(39)Hb

(

x1, . . . , xn, p1, . . . , pn
)

=δKE = �i

〈

δ
diff
i

〉

op
,

Figure 3.  Contour of the value of δdiff  along the tube axis. Each value is distributed with dt=10 fs along the x 
axis. (a) MD simulation result, (b) CGMD simulation results, (c) histogram of the diffused level in simple bead 
system from MD simulation result during 10 ns, with the results from all UAs shown, (d) histogram for the 
CGMD simulation results.
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This cross-correlation can be incorporated as a meta-dynamics  derivation53 into the governing equation as 
defined in Eqs. (37)–(40), which is activated locally as a constrained term of the Lagrangian multiplier. Further 
approximation and derivation are provided in Method section and Supplementary Info. C. The equations of 
motion from this rough approximation is:

where to give this virtual force in the THz range, the +/− sign alternation is included, which is noted as 〈〉op in 
Eqs. (41)–(42). α and α′ are the parameters for heat diffusion damping which are manually optimized. We suppose 
that these variables are related to the quantity of heat capacity of the group of atoms which is varying with the 
macroscopic deformation. More rigorous study would be interesting for further works on the connection of the 
diffusion of the internal heat affected by macroscopic deformation and how second sound modulation is involved.

In practical application of the damping from the heat diffusion, the optical mode definition of Eqs. (41)–(42) 
can bound the memory effect term M(ω) in the optical mode frequency range as well:

where C is an arbitrary value. The time integration of the optical mode can be a damping on the infinitesimal 
volume in phase space as written in Eq. (15) so that infinitesimal volume can be preserved with small oscillation.

In Fig. 3b, the dispersion plot of δdiffi  from CGMD calculated using Eqs. (41)–(42) shows no dispersion at all, 
which is quite natural since the equation of motion artificially provides perturbation in the THz range. However, 
the histograms of the value of diffusion in CGMD have identical distribution to that of the MD simulation, as 
shown in Fig. 3c,d. This result reflects the similarity of dynamics between CGMD and MD.

Validation. Figure 4 shows a comparison of the trajectories of the end of the tube from CGMD and from 
MD simulation whose simulation condition is described in Method section and Supplementary Info. D. The 
same timeline is displayed in the animated gif. The displacements of both conditions are processed by inverse 
fast Fourier transform (IFFT) to remove the higher frequency component. Without any additional data process-
ing, the two simulations that share the initial conditions only give almost perfect synchronization from few Ang-
stroms of its initial stage up to 10 ns. The result of the simulations with longer duration is validated by counting 
the number of motion exchange. The detailed result is also provided in Supplementary Info. D. It is concluded 

(40)δ
diff
i =

∂2p
′l
i pi

′θ

∂x2
.

(41)ml̈ + α

〈

∂2vθ

∂x2

〉

op

=−
∂�CG

∂ l
,

(42)

(43)M =
∑

α

∫ t

0
dsδPQσ (t − s) ·

P̂α(s)

Mα

(44)=

∫ t

0
dsq̇i(t − s)eiωop(t−s) ·

P̂α(s)

Mα

≈ Ceiωop(t),

Figure 4.  Initial trajectory of the SWCNTs calculated from MD and strain CGMD. The blue line shows the MD 
simulation results, and the red line shows the strain CGMD results. Strain CGMD obtains its initial data from 
the MD simulation, and there is no further compensation during the calculation process: (a), (b) displacements 
of the SWCNT tip along the x and y axes for the initial 0.5 ns, (c) and (d) displacements along x and y for 1 ns 
after 10 ns.
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that the simulation with a soft boundary with 1 eV fixing with the Lennard-Jones (LJ) potential energy at the end 
of cantilever beam is the closest to the MD simulation result.

The CGMD simulation calculated using the initial data of the MD simulation resolves the thermal equilibrium 
conditions well, so several simulations with different size of beads retains in constant temperature conditions 
as the given initial conditions. Total 3 different types of CG particle are conducted with 20, 60 and 120 carbon 
atoms of SWCNT. These are noted as UA20, UA60 and UA120, respectively. The results are as shown in Fig. 5. 
Figure 5a shows the results for the UA20 simulation with a rigid boundary. In case of 50 K, the right parameter set 
could not found so that it is not close the equilibrium. Figure 5b shows the results of the UA60 simulation, which 
also has a rigid boundary. Both results show the stabilized temperature level around 300 K, but the fluctuation is 
rather large in the case of UA60. Figure 5c with the LJ potential function for fixation with a condition similar to 
that the MD simulation shows less fluctuation. Figure 5d–f show the total energy for each case, which remains 
at a constant value with a given random force in Eqs. (41)–(42). We do not argue further regarding whether 
the suggested calculation rigorously enforces the NVE condition or ergodicity. We are interested in achieving a 
constant temperature and motion characteristics, which should have the same nonlinearity as that shown in the 
MD simulations. For this reason, we call the thermal condition that we achieved a semi-thermal equilibrium. A 
study of the ergodicity will be conducted in further work. The parameter set for Eqs. (41)–(42) is given in Table E1 
of Supplementary Info. E. Bigger the nodes, more severe memory effect is expected, however, the integration are 
not no longer essential with heat diffusion damping and its proper parameter set.

To confirm the versatility of our approach, longer SWCNTs are tested with different node lengths. (5,5) 
SWCNTs with length of 15 nm are calculated using MD simulation with the same simulation condition intro-
duced in Supplementary Info. E, and the results are processed as a simple bead string to create the input data 
for the CGMD simulation. The given temperature is 300 K, and the same damping algorithm is applied to two 
different CG particles which are corresponding to 60 and 120 carbon atoms. This approach gives the intended 
semi-thermal equilibrium condition, as shown in Supplementary Info. E. The results show a constant temperature 
profile with a longer duration than those obtained in other calculations. The simulations were performed under 
the perfect rigid fixation condition. With a slightly modified parameter set, the suggested algorithm shows good 
versatility with SWCNTs with different lengths.

For a simulation with UA60 model, the required simulation time was approximately a maximum of 2 h with 
a 1.6 GHz Intel Core i5 CPU.

Discussion
The CG modeling of SWCNTs has been examined to reproduce the nonlinear dynamics. SWCNTs with lengths 
of 8 nm and 15 nm were modeled with three different CG particle sizes at different temperature conditions in 
the cantilevered condition. For all of these simulations, the initial conditions are obtained from MD simulations. 
We found that the characteristics of the dynamics from the conventional CGMD simulation are not consistent 
with those of the MD simulation due to the random noise from the thermostatting algorithm and the lack of 
complexity of the potential energy for reproducing the nonlinear bending motion. The effect of the additional 
thermostat is overwhelming, so the macroscopic motion from free thermal vibration is not preserved. The 
discrepancy between the simple bead spring model in CGMD and the initial condition from MD simulation is 
resolved using an additional force suggested from the diffusion of the cross-correlated state of the bond length 

Figure 5.  Temperature and total energy of the strain CGMD simulation without external thermostatting at 50, 
100 and 300 K shown by red, green and magenta lines, respectively: (a) and (d) UA20 with rigid boundary, (b) 
and (e) UA60 with a 0 K rigid boundary, (c) and (f) UA60 with LJ potential fixation with ε = 1 eV for 300 K and 
1 eV for 100 K.
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and angle. The modified equation of motion using heat diffusion of the cross-correlated state maintains its 
dynamics to be very close to thermal equilibrium, and its macroscopic motion is proved to be consistent with 
the nonlinear motion observed in the atomic MD simulation. The new method was also shown to be effective 
for the longer node length with a larger time step than the conventional CGMD simulation including dynamics 
that are almost perfectly synchronized with the dynamics of the MD simulations. The precise reproduction of the 
nonlinear motion of SWCNTs in the improved CGMD simulation shows that the causality of nonlinear motion 
of SWCNTs can be deeply related to the internal heat diffusion in the THz range.

The suggested algorithm described by Eqs. (41)–(42) is clearly different from DPD modeling because it 
includes random noise and dissipation as a single term. This algorithm is supposed to eliminate the possible 
evolution of artificial drifts presumed to be due to the cross-correlated state between the different potential 
energy functions as discussed in previous  studies37,54 For MD simulations, the drift is assumed to be dissipated 
as a small amount of perturbation in the THz range so that CG modeling can adapt this constraint to reduce 
the strong cross-correlation using a diffusion process. Although it is not fully elucidated at the level of phonons 
and second sound, the almost perfect synchronized motion of the CGMD and MD simulation with the constant 
temperature profile in Fig. 4 proves that an exact damping or scattering mechanism related to the diffusion can 
exist. On the other hand, the importance of the optical mode in CG modeling and the macroscopic dynamic 
characteristics has been mentioned in several  papers24,30,55, and the memory effect that includes the entropy 
such as Zwanzig  SDE47,55 or approximation from the second fluctuation  theorem21 can provide a more precise 
expression for calculating the dynamics from the second sound as a further approach. Understanding the role of 
cross-correlation damping on the reversibility with constant temperature and the formulations in the free energy 
 definition7,50,51 in more complicate molecular systems is also required. Seeking a fundamental understanding to 
obtain precise parameters will enable engineering the nonlinearity at the  nanoscale43,56,57.

A modified equation of motion with cross-correlation diffusion may lead to several related theories that can 
provide better a methodology to obtain the parameters in Eqs. (41)–(42). Even though the range of the param-
eters is conjectured from the cross-correlation in Fig. 2, the process of determining the parameter sets is rather 
close to the manual method. These parameters depend strongly on various conditions such as the node length, 
temperature and boundary rigidity. One powerful approach is iterative Boltzmann inversion (IBI), but it is not 
affordable for the parameters because the population of the state of IBI is derived from the multiplication of the 
partition functions, which involves averaging the data which makes the characteristics of cross correlated state is 
averaged out. Some modification with a Bayesian approach for further numerical fitting would be an interesting 
 connection5. From the results of this research, a parameter study based on a rigorous theoretical explanation 
would ensures the further trials which will offer more specific direction for the improved applications of this 
method not only to nanotubes but also to more complicated CG mapping which is intricated with memory effect.

Methods
Derivation of equation of motion with heat diffusion. When it is presumed that the heat bath works 
for the discrepancy of simultaneous exertion of multiple harmonic potential energy functions which should be 
independent each other, it is possible to think about the small amount of kinetic energy involved in their bal-
ances from the heat bath. In the main text, we note that the cross correlated condition of the momentum can be 
a sort of heat source which induce the energy diffusion, ∂

2p
′ℓ
i pi

′θ

∂x2
 . There is no separated value for p

′ℓ
i  and pi ′θ in 

the simulation so that each momentum is designated from the angle and bond length difference in a time step, 
vθ = �θ/�t and vℓ = �ℓ/�t , respectively. Following is the conventional heat diffusion equation:

where D0 is diffusion coefficient of the material and D is the parameter that compensates the heat and kinetic 
energy diffusion. u = u(z, t) is the temperature distribution along tube axis z and time t. v0 is the background 
temperature of SWCNT which is equivalent to v2θ + v2l  as the given kinetic energy when the system has independ-
ent Hamiltonian. We can write diffusion equation as followings:

Because the kinetic energy has additional term δKE from δu = 3m/2kbδKE , so does the equation of motion. 
It could be controversial because the momentum that we are dealing with is averaged value from the atomic 
scale simulation. The assumption is that thermal energy compensates macroscopic motion from heat diffusion 
process by second sound modulation, and the possibility of this assumption has well shown through the disper-
sion plot in Fig. 3 of the main text, which indicates the second sound modulation has its certain value in the 
simple beads system.

The modified kinetic energy as including thermal diffusion condition will be:

(45)∂δu

∂t
=D0

∂2δu
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where m is the mass of the particle, v is the velocity and i is the number of each node. D′ is the value of D com-
pensated with the inverse of 3m/2kb . KEtot and KE0 are the total kinetic energy of the system and original kinetic 
energy without heat diffusion for cross correlation damping, respectively. The Lagrangian and the equations of 
the motion with additional kinetic energy is:

where φ is potential energy. As mentioned in the main text, δKE is in THz range. It is presumed to be as optical 
mode, so that the term derived from δKE is noted with 〈〉op:

MD and CGMD simulation. The appearance of nonlinear motion of SWCNTs in thermal equilibrium 
depends on the temperature and aspect ratio. Longer SWCNTs have less motion exchange. If the motion 
exchange is too infrequent, the examination of suggested model will be inefficient. Shorter SWCNTs make the 
motion too noisy and extremely complex so that the validation will not be easy. Therefore, a proper choice of 
SWCNTs and temperature for the simulation ensures that the numerical experiments are convenient. Based on 
these considerations, (5,5) SWCNTs with a length of 8 nm at 300 K are modeled as a simple bead system. In a 
previous MD simulation  study40, the trend of motion exchange clearly depends on the rigidity of the fixed end 
boundary condition. The fixed end with the Lennard-Jones (LJ) potential function is employed to ensure the 
affordability of the suggested CGMD simulation. These SWCNTs at 300 K provide exemplary nonlinear charac-
teristic dynamics, as shown in Fig. 1.

The MD simulation was performed with the LAMMPS  package58 with an adaptive intermolecular reactive 
bond order (AIREBO) potential  function59, with a time step of 0.5 fs. The Langevin thermostat with a damping 
coefficient of 0.01 ps is attached to the system during the initial 1 ns. The displacement and velocity data of all 
atoms are captured after 1 ns of relaxation. The rigid end fixation is applied at the bottom with the phantom wall 
condition, which has a length scale σ of 0.89 Å  with the LJ potential function. The rigidity of the end fixation, 
which is determined by the LJ energy scale, is also applied for CGMD simulation. For comparison, the fixation 
rigidity has been set with 1 and 5 eV.

To define CGMD beads, the displacement and velocity of every 60 atoms are simply averaged as one lumped 
mass, i.e., a bead. The target SWCNT has 660 atoms so that the system has 11 lumped masses. It is regarded as 
a unified atom (UA), which is equivalent to a coarse-grained (CG) particle. However, to obtain proper bending 
motion, one additional unified atom should be attached next to the fixed end of the simple bead model in the 
CGMD simulation. In this way, the bending angle between the fixed end and its neighbors can be treated. Addi-
tionally, simple bead systems with a lumped mass consisting of 20 and 120 atoms are examined. The bond length 
for the CG particle incorporating 20 carbon atoms (UA20) is 2.42 Å, and the mass is 240 amu. CG particles for 
60 and 120 atoms (UA60 and UA120, respectively) are also used in the case of UA20.

The force constants for bond length and angle spring are ksp = 220 eV/Å and kang = 2200–2800 eVÅ from 
the parameter  study2 of each spring, which are obtained from the rigorous measurement using an external 
force at 0 K. The precise value of kang is determined by the peak location in the frequency domain. The velocity 
Verlet algorithm is used with a time step of 0.5fs for the case of UA20. A time step of 10fs is adapted for UA60 
and UA120. The total time spans of the simulations are 250ns and 5µs for UA20 and UA60/UA120, respectively.

Cross‑correlation condition. In Fig. 5, the changes in the strain, �tL and angle, �t� , in 50 fs of an arbitral 
node of a string, which are equivalent to pℓi  and pθi  with 1/�t , respectively, are sampled from MD and CGMD 
simulations and are processed to show cross-correlation in the frequency domain. For MD simulations, the value 
of strain and angle of beads model are averaged from the atomic structure of SWCNTs for each node. The cross-
correlation during 500 ps is used for FFT. Most of the peaks appeared in the THz range for both CGMD and 
MD simulations. No significant results were obtained in the range below THz. The CGMD simulation results 
show more distinctive peaks than the MD simulation results. This means that (1) CGMD has the velocity values 
caused by angle and bond length, which are strongly correlated in a periodic manner due to the absence of an 
appropriate constraint, and (2) the MD simulation has a cross-correlation that is not active in the bending fre-
quency range but is active in the optical mode range. In the MD simulation, the force caused by 2ℓiθi is close to a 
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small perturbation in the CG description level, and it is eliminated via an internal heat diffusion process through 
fluctuation-dissipation in the THz range.
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