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ABSTRACT

We investigated dynamical processes of capillary-mediated deformation of vertically aligned 

single-walled carbon nanotubes (VA-SWCNTs) via in situ observation of their wetting and 

dewetting behaviors using an environmental scanning electron microscope (ESEM). Three types 

of wetting behaviors on a VA-SWCNT sample were confirmed, including conical shaped water 

aggregates, spherical droplets on tips of conical shaped water aggregates, and extensively 

distributed water layers. While the former two types both resulted in dimples on the VA-

SWCNT surface and failed to induce large-scale deformation of VA-SWCNTs, the latter caused 

the formation of wall-like structures and crack propagation in the VA-SWCNT film during the 

dewetting process due to directional retraction of vapor-liquid interfaces. This dewetting-induced 

large-scale deformation that was confirmed by the in situ ESEM observation for the first time 

represented initial stages of capillary processes, leading to the self-organization of VA-SWCNTs 

reported in recent literatures. Compared to the previous studies based on ex situ observations of 

dried samples, our in situ observation successfully captured temporal evolution of the dewetting-

induced deformation, facilitating the more precise construction of predictive models of final 

morphologies of VA-SWCNT films after capillary-mediated densification.
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1. Introduction

Carbon nanotubes (CNTs) [1,2] possess excellent electrical [3], optical [4], mechanical [5], 

and thermal properties [6]. CNTs, thus, have been widely studied for various applications. In 

addition to nanostructures of an individual CNT, there is a need to control macroscale 

morphologies of CNT ensembles, which depends on intended applications. For instance, 

horizontally aligned CNTs [7] are suitable for field-effect transistors [8], while vertically aligned 

(VA-) CNTs [9,10] are efficiently used for thermal interface materials [11]. The morphology of 

VA-CNTs can be further adjusted via post-growth processing. Capillary-mediated self-

organization of VA-CNTs [12,13] is one of the attractive approaches in terms of its scalability 

and low-cost. Such a simple liquid-induced process has realized various CNT morphologies by 

tuning original VA-CNTs and treatment methods, such as honeycomb-like networks [12,13], 

tepee structures [14], densified arrays [15], and more complex architectures [15,16]. These 

shape-engineered CNTs have demonstrated their superior performance as cell seeding scaffolds 

[17], field-emitters [18], super-capacitors [15], sliding electrical contacts [19], and CNT-Si 

heterojunction solar cells [20].

In general, when nanopillars such as VA-CNTs are immersed in water and pierce the vapor-

liquid interface, capillary force causes nanopillars to bend and buckle [21–26], resulting in their 
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collapse or clustering [27]. Some studies have proposed predictive models for the final 

morphology of VA-CNTs after capillary-mediated densification [27,28]. However, most studies 

to date have been based on ex situ observations of the dried structures [12,16,19,29], paying 

much less attention to dynamical processes of VA-CNT deformation during wetting and 

dewetting. The elucidation of these dynamical processes can contribute to constructing more 

precise models that enable the prediction of the final morphology according to experimental 

conditions; therefore, allowing the opportunity to tailor morphologies for certain purpose. 

However, it is still a challenge to observe microscale dynamical processes of the VA-CNT 

deformation using an optical microscope via conventional direct immersion of VA-CNTs in 

water [12,30] or exposure of VA-CNTs to vapor [16,19,29]. Therefore, the present study aims to 

capture the dynamical processes of the capillary-mediated deformation of vertically aligned 

single-walled carbon nanotubes (VA-SWCNTs) by in situ observation of their wetting and 

dewetting behaviors using an environmental scanning electron microscope (ESEM). The 

formation of wall-like structures and crack propagation in a VA-SWCNT film during the 

dewetting process of water were confirmed, which supports the initial stage of capillary-

mediated modifications of VA-SWCNT morphologies.

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280



6

2. Materials and methods

2.1. Vertically aligned single-walled carbon nanotubes (VA-SWCNTs)

VA-SWCNTs were synthesized on a Co/Mo dip-coated Si/SiO2 substrate using the alcohol 

catalytic chemical vapor deposition process [10,31], as shown in Fig. 1. The high G/D ratio 

obtained by the Raman spectroscopy (see Supplementary material S1) ensured the high quality 

of the VA-SWCNTs. The average diameter of the VA-SWCNTs and the film thickness were 

about 2 nm and 5 μm, respectively. The number density of the VA-SWCNTs was ~ 1012 cm–2, 

leading to the porosity of ~ 97% [32]. The VA-SWCNT film had a disordered and dense crust 

layer on the top region [33].
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(a)

(b)

5 μm

5 μm

Fig. 1. Scanning electron microscope (SEM) images of the VA-SWCNT film from a top view (a) 

and a side view (b).

2.2. Experimental identification of water-induced deformation of VA-SWCNTs

It was reported that the exposure of VA-CNTs to vapor results in self-assembled 

microhoneycomb networks [20], although its microscale dynamical processes are yet to be 

understood (see Supplementary material S2). In the present study, we employed an 
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environmental scanning electron microscope (ESEM, FEI Quanta 250) for the in situ observation 

of water-induced deformation of VA-SWCNTs, as illustrated in Fig. 2. The sample was mounted 

on a copper holder in contact with a Peltier cooling stage at 1.0 °C. The sample was tilted by 65° 

with respect to the horizontal direction to observe the water distribution and shapes of water 

aggregates on the sample. The ambient temperature inside the vacuum chamber, except in the 

vicinity of the sample, was about 23 °C (i.e., room temperature). The working distance was 3 

mm. The acceleration voltage and the probe current were 20 kV and 0.28 nA, respectively. The 

pressure of water vapor was initially kept at P ≈ 680 Pa and elevated to P ≈ 760 Pa to initiate the 

vapor condensation. Subsequently, the vapor pressure was reduced to P ≈ 680 Pa to induce the 

water evaporation. This pressure range roughly originated from the saturation vapor pressure 

(657 Pa) at 1 °C [34], although a larger pressure was actually required to trigger vapor 

condensation on the VA-SWCNT film because the film temperature was higher than that of the 

Peltier cooling stage.

Note that before measurements, almost all gases in the chamber were purged by water vapor 

through purge-flood cycles, ensuring that the fraction of non-condensable gases was lower than 

1%. Then, the water vapor pressure inside the chamber was controlled via the microscope’s 

feedback control system.
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Electron gun

Electron beam

Copper 
holder

Substrate

65°

Peltier cooling stage (1.0 °C)

3 mm

Vacuum chamber

23 °C

VA-SWCNT

Fig. 2. A schematic presentation of the ESEM measurement system. The sample was mounted 

on a copper holder in contact with a cooling stage at 1.0 °C via a Peltier cooling system. The 

sample was tilted by 65° with respect to the horizontal direction. The ambient temperature inside 

the chamber was about 23 °C. Dimensions are not to scale.

After the in situ observation of the VA-SWCNT deformation induced by water vapor 

condensation and evaporation, a scanning electron microscope (SEM) (Hitachi High-Tech, S-

4800) was also employed to complement the observation.
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3. Results and discussion

Figure 3 shows water aggregates condensing on the sample at the vapor pressure of P ≈ 760 

Pa in the ESEM chamber. Water aggregates under the crust layer were visible because the VA-

SWCNT film was transparent, owing to its high porosity (~ 97%) which allowed the electron 

beam (secondary electrons) to enter inside (escape from) the film. The bottom left region 

bounded by the green dashed-dotted line was initially exposed to electron beams for observation, 

followed by the change of view. Clearly, there was negligible condensed water in the initial 

observation area due to electron beam heating effects [35,36]. Meanwhile, an evident amount of 

water aggregates were found at the boundary of the initial observation area swept by the electron 

beam. In addition, a number of small water aggregates were observed out of the initial 

observation area. Three types of wetting behaviors on the VA-SWCNT sample were confirmed, 

including (I) conical shaped water aggregates, (II) spherical droplets on the tips of conical 

shaped water aggregates, and (III) extensively distributed water layers. While the water 

aggregates of types (I) and (II) were mainly observed out of the initial observation area, the 

water layers were only observed along the edge of that area. We infer that this intriguing 

phenomenon originates from the balance between suppression and enhancement effects of vapor 

condensation by electron beams. While heating effects due to electron beams [35,36] suppressed 
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vapor condensation, positively charged water molecules (H2O+) in the ESEM chamber interacted 

with negatively charged surfaces [37] and became H2O, enhancing the nucleation of liquid water. 

Specifically, the boundary of the initial observation area was exposed to more electron beams 

because of the turnarounds of the electron beam sweep. Vapor condensation, thus, was enhanced 

and overwhelmed the evaporation due to heating effects. This allowed for the formation of 

extensively distributed water layers (III) in the ESEM environment. For the water aggregates of 

type (I), the nucleation was considered to occur at the interface between the substrate and VA-

SWCNTs (Fig. 2), where the temperature was lower than that at the tips of VA-SWCNTs. The 

condensation growth subsequently proceeded upwards until the crust region was reached, which 

suppressed further growth in the height direction. The type (II) may originate from type (I), i.e., 

water aggregates of type (I) turned to be type (II) after penetrating through the crust region. As 

we discuss below, the extensively distributed water layers (III) mainly contributed to the 

formation of wall-like structures and crack propagation.
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10 μm

(II)

(I)

(III)

(II)(I)

(III)

Initial
observation area

Crust

SW
C

N
T

Water Substrate
Water layer inside the film 

Fig. 3. Wetting behaviors of VA-SWCNTs observed in the ESEM chamber having the vapor 

pressure of P ≈ 760 Pa. Water aggregates under the crust layer were visible because of high 

porosity of the VA-SWCNT film. Three types of wetting behaviors were exhibited, i.e., (I) 
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conical shaped water aggregates, (II) spherical droplets on the tips of conical shaped water 

aggregates, and (III) extensively distributed water layers inside the VA-SWCNT forest. The 

bottom left area bounded by the green dashed-dotted line was initially exposed to electron beams 

for observation.

Figure 4 shows the type (III) wetting behavior of VA-SWCNTs during vapor condensation 

observed in the ESEM chamber. VA-SWCNTs became evidently wet for the pressure of P ≈ 760 

Pa, exhibiting extensively distributed water layers as discussed above. We note that there was no 

evident structural deformation of the VA-SWCNTs during the wetting process for more than 5 

min. In contrast, structural deformation of the VA-SWCNTs was clearly confirmed during the 

dewetting process, as shown in Fig. 5. By decreasing the pressure to P ≈ 680 Pa, a dimple 

appeared in wet SWCNTs as shown in Fig. 5(a). Subsequently, vapor-liquid interfaces retracted 

from the dimple along the edges of the initial observation area (Fig. 3) as indicated by the dashed 

arrows in Figs. 5(b)–(f), generating structural deformations of SWCNTs along these directions. 

This directional retraction of the vapor-liquid interfaces played a key role in the large-scale 

structural deformation of VA-SWCNTs.
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10 µm

(a) t = 0

(b) t = 324 s

Fig. 4. The type (III) wetting behavior of the VA-SWCNTs during vapor condensation observed 

in the ESEM chamber having the vapor pressure of P ≈ 760 Pa; (a) t = 0 s, (b) t = 324 s.
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10 µm

(a) t = 0 (b) t = 19 s (c) t = 58 s

(d) t = 86 s (e) t = 202 s (f) t = 366 s

dimple

Fig. 5. Time evolution of dewetting-induced deformation of the VA-SWCNTs during 

evaporation of an extensively distributed water layer (the type (III) in Fig. 3) observed in the 

ESEM chamber having the vapor pressure of P ≈ 680 Pa; (a) t = 0 s, (b) t = 19 s, (c) t = 58 s, (d) t 

= 86 s, (e) t = 202 s, (f) t = 366 s. The dashed arrows in (b)–(f) represent the directions of 

structural deformations.
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To investigate the dewetting-induced deformation of the VA-SWCNTs in detail, Fig. 6 

compares the in situ ESEM image with the subsequent SEM images after the exposure to vapor. 

As shown in Fig. 6(b), collapsed SWCNTs were clearly observed. In addition, crack and wall-

like structures were also confirmed in Figs. 6(c) and (d). Again, extensively distributed water 

layers (III) played an important role to induce large-scale deformation of the SWCNTs, resulting 

in the collapse, crack propagation, and formation of wall-like structures.

(a) (b)

(d)

10 µm

(b)

(c)

(c)

10 µm

Crack

10 µm

(d)

2 µm
Wall

Fig. 6. Specification of dewetting-induced deformation of SWCNTs by comparing the in situ 
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ESEM image (a) with the subsequent SEM images after the exposure to vapor (b–d). The SEM 

observation angle was 65° in accordance with the ESEM observation. (a) ESEM image identical 

to Fig. 5(f). (b) SEM image corresponding to the region denoted by the dashed line in (a); (c) 

SEM image of the crack corresponding to the region denoted by the dashed-dotted line in (a); (d) 

SEM image of the wall-like structure corresponding to the region denoted by the dashed line in 

(b).

Figure 7 shows the SEM images of the SWCNTs where the water aggregates of types (I) and 

(II) were present. While a number of dimples were present on the SWCNT surface, large-scale 

structural deformation of the SWCNTs was not confirmed, which is different from the area 

where the water layers (III) were extensively distributed. Basically, VA-SWCNTs that pierce a 

vapor-liquid interface are subject to a compressive force along the thickness and hence likely to 

buckle [27,38]. More specifically, for a circular rod clamped on a substrate, the critical buckling 

length is given by

𝐿c =  
𝜋
2

𝐸𝐼
𝐹cap

(1)

where E ~ 1 TPa is Young’s modulus of a single SWCNT [39], I = πr4/4 is inertia moment with 

SWCNT radius of r ~ 2 nm, Fcap = 2πrcosθ is capillary force with surface tension of γ ≈ 72 
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mN/m and contact angle of θ ≈ 86˚ corresponding to a water droplet on a graphite surface [40]. 

Equation 1 yielded Lc ≈ 0.7 μm < H ≈ 5 μm with H being the SWCNT length. The possibility of 

the SWCNT buckling, thus, was indicated. However, entanglements and crust regions together 

with the small amount of water prevented complete collapse of SWCNTs in the present 

conditions. In addition, no clear difference in the deformed structures was observed between the 

spots where the water aggregates of types (I) and (II) were present. Namely, both of type (I) and 

(II) water aggregates just yielded dimples and failed to induce large-scale deformation of the 

VA-SWCNTs in contrast to type (III). Directional retraction of vapor-liquid interfaces of 

spatially distributed water layers (Fig. 5) played a crucial role for the large-scale deformation of 

VA-SWCNTs, leading to crack propagation and formation of wall-like structures. Although the 

extensively distributed water layers observed in the present study stemmed from the vapor 

condensation enhancement due to electron beams, we expect that the directional retraction of 

their vapor-liquid interfaces could be a main factor of spatially distributed deformation of VA-

SWCNTs in actual capillary process.

953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008



19

(a)

(b)

30 μm

2 μm

Fig. 7. SEM images of the SWCNTs where the water aggregates of types (I) and (II) were 

present in Fig. 3. The SEM observation angle was 65° in accordance with the ESEM observation 

(Fig. 2). (a) Dimples distributed on the SWCNT surface. (b) Enlarged view of a representative 

dimple.

Finally, self-assembled microhoneycomb networks reported by Cui et al. [20] were not 

observed in the present study. We note that the water vapor treatment [20] consisted of repetitive 

1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064



20

two steps, i.e., (1) exposing a VA-SWCNT array to vapor from a hot water reservoir and (2) 

turning the sample over and drying the array in an ambient environment (see Supplementary 

material S2), which is considerably different from our experimental condition.

4. Conclusions

We investigated dynamical processes of capillary-mediated deformation of vertically aligned 

single-walled carbon nanotubes (VA-SWCNTs) by in situ observation of their wetting and 

dewetting behaviors using an environmental scanning electron microscope (ESEM). We 

confirmed the formation of wall-like structures and crack propagation in the VA-SWCNT film 

during the dewetting process of water, which were caused by extensively distributed water layers 

that resulted in directional retraction of vapor-liquid interfaces. Such dewetting-induced large-

scale deformation that was for the first time captured by the in situ ESEM observation 

represented initial stages of capillary processes, leading to capillary-mediated self-organization 

of VA-SWCNTs. Our findings can help to more precisely construct the predictive models of 

final morphologies of VA-SWCNT films after capillary-mediated densification. Finally, it will 

be interesting to use SWCNT films with microscale patterns fabricated via a lithography process 

[38]. The pre-patterned surfaces would allow us to control the directions of SWCNT 
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deformation, enabling more systematic in situ observation of the dewetting-induced deformation 

using an ESEM.
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