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1. Introduction  

 Vibration of suspended and cantilevered nanotubes 

and nanowires has been studied extensively in 

electronics circuits such as transistor, mixer[1], 

sensors[2-3] and mesoscopic quantum theory[4]. 

 Recently, it is reported that the power spectrum of 
the free thermal vibration of cantilevered single 

walled carbon nanotubes (SWNT) can be well 

expressed by Euler beam and Timoshenko beam 

theory and the continuous mechanics portion of the 

motion among the total thermal energy is about 97 

percent [5-6].  

 The beam motion and thermal vibrational motion 

are strongly coupled for nanoscale structures. 

Vibrational motion or temperature can evolve to 

the beam motion. We observed that there is non-

planar motion with beating and bifurcation with 

long time span in NVE condition using molecular 
dynamics (MD) calculation. A few experiments are 

reported about free thermal vibration of the nano-

scale cantilevered and suspended structure. Non 

planar motion of free vibration[7] and forced 

vibration[8] is measured using the field emission 

method (FEM) in silicon nanowire. 

 We show that poincare distribution and frequency 

response in fine resolution shows this doffing (non-

planar) motion satisfies the solution of continuum 

non-linear equation which is derived by Hamilton’s 

extended principle[9].  
 

2. Theory  

 We extended non-planar non-linear continuum 

theory which has once reported to explain the 

forced nonlinear motion of suspended SWNT in 

field effective transistor (FET) system[10]. In 

continuum dynamics, the main reasons of non-

planar and non-linear motion of 1D structure are 

supposed to be the longitudinal extensibility of 

structure and torsional motion. 

 In our theory, extensibility is considered. From the 

extended form of Hamiltonian which has the strain 
energy over this assumption, we can derive the 

non-dimensionalized nonlinear equation for 

cantilever beam motion as followings:  
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here,   ,    and    are non dimensional displacements 

along x, y and z directions. Tube axis is aligned along 

z axis.   is effective area of tube,   is tube length, s is 

the non dimensionalized variable of z (     ) and   

is longitudinal strain. The first two terms in Eq. (1) and 

(2) are classic beam equation and last integration 

comes from the extensibility assumption. Eq. (3) is the 

equation for longitudinal displacement condition. The 

kinetic energy along the tube axis is ignored.  

 The analytical solutions for Eq. (1) and (2) are 

integrated   using Galerkin method and KGM 

method[9] like:  

 

                                                      

                                                      

 

where a    and      satisfies: 

 

              
                                            

             
                                             

                

  
 

 
   

  
 

 
 

 

   
      

    
  

                       

 

   

         
  

  
    

  
 

       
  
      

    
              

     
 

   
          

 

 

  Double signs are used with same order. Integration 

constants    through   are obtained using energy 

conservation condition and initial conditions. This 

constant is dependent on the temperature and vibration 
frequency.  

 

3. Simulation  

  The simulation using 8 nm and 10 nm long (5,5) and 

(10,10) SWNT is performed with long time span to 

consider the stability of motion. Unit cell includes 10 

and 20 atoms respectively. Bond length is      0.142  

 

 



 

 

 

 

 

Figure 1. Poincare map of the cantilevered 8nm and 25nm long (5,5) SWNT at 50K. The trajectory is come from the tip location. (a) 

MD calculation with 8nm length SWNT, (b) MD calculation with 25nm, (c) Nonlinear Continuum theory with 8nm SWNT (d) 

Nonlinear Continuity theory with 25nm.  

 

nm and the LAMMPS package code was used with 

Brenner potential function which is tuned for phonon 

dispersion. Each condition is initially set at 50 K and 

langevin thermostat was used with the damping 

coefficient 0.01. Time step size is 0.5 fs. After 

initialization, it is calculated in NVE with fixed 

boundary. 

 The temperature profile in time domain supports 

constant energy state.  However, unlike the temperature 

and total energy, the displacement profiles show beating 

and whirling motion. To observe this, the tip 

displacement and velocity was averaged from the ring 

which is located at 7.5 nm and 22.8 nm from the bottom. 

 

4. Result and discussion 

  Figure 1 shows that Poincare maps calculated from 

MD and continuum theory. They show similar overall 

trajectories for both length. In case of 8nm long SWNT, 

Poincare map is the duplication of the trajectories of 

several cycles which has different path. These 

trajectories for each cycle and its order also can be 

explained from the analytical solution of Eq. (1) and Eq. 

(2). Since this solution has time varying amplitude, 

beating or couple of more frequency near the 1st mode 

is very natural in nonlinear theories.  

 Based on the similarity of MD calculation and non-

linear continuum theory in Poincare map, we can 

confirm the assumption of the longitudinal 

displacement and Green strain. According to the 

derivation, it is impossible to have the in-plane bending 

motion in free standing condition with the displacement 

along tube axis. So far, this non linear motion equation 

tells us that the size of tubes which decides the 

frequency in non dimensionalized motion and the 

temperature which influences the amplitude of 

displacement in lateral and axial direction is the 

determining parameter for duffing. 

 The reason why it follows continuum scale dynamic 

strain energy is yet not clear. For certain, this nonlinear 

motion should be consisting of its eigenmodes of the 

structure and their interaction. In nanoscale, it could 

mean this periodic non linear motion is due to the 

aggregation of phonons. Developing the more concrete 

analysis will be meaningful for various multiscale and 

multi physics calculations to deal with cantilevered and 

suspended nano structure. 

 

5. Summary 

  We observed the non-planar duffing motion in free 

thermal vibrations of SWNT and found that this motion 

can be expressed using non linear continuum dynamics 

equation. We derived the analytic solution from the 

extended form of Hamiltonian and KGM method.  
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