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Abstract

The Ajiki-Ando (A-A) splitting of single-walled carbon nanotubes(SWNT) originating from the

Aharanov-Bohm effect was observed in chiral specific SWNTs by the magneto-absorption measure-

ments conducted at magnetic fields of up to 78 T. The absorption spectra from each chirality showed

clear A-A splitting of the E11 optical excitonic transitions. The parameters of both the dark-bright

exciton energy splitting and the rate of A-A splitting in a magnetic field were determined for the

first time from the well-resolved absorption spectra.
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I. INTRODUCTION

A single-walled carbon nanotube (SWNT) is one of an ideal nanosystem for observing

the splitting of energy bands upon application of an external magnetic field oriented

parallel to the tube axis. This is known as the Aharanov-Bohm effect. The splitting was

first considered theoretically by Ajiki and Ando, and is hence called Ajiki-Ando (A-A)

splitting [1]. The observation of A-A splitting in various SWNTs has been reported by

many authors by means of the absorption [2, 3] or by photoluminescence (PL) spectroscopy

[3, 4]. Owing to the interplay between inter- and intra-K-K-valley short-range scattering,

the exciton states are very complicated with 16 split states of the bright and dark excitons

[5]. The application of a magnetic field causes the mixing of both states, and it is

expected that the complicated exciton states can be clarified experimentally. So far, the

dark exciton states in ensemble samples have been identified in magneto-PL [6, 7] or in

micromagneto-PL[8] in the case of a single SWNT. PL in general is a process arising

from a final state after the event of photoexcitation, and is therefore sensitive to unknown

impurities or localized states, and is not necessarily a good method for determining and

discussing intrinsic and coherent energy states, such as exciton states. With the aim

of observing A-A splitting and the behaviors of these exciton states, we attempted to

perform magneto-optical absorption measurements up to an ultrahigh magnetic field.

The oscillator strength of the optical transition, which can be compared directly with

theoretical models, can be derived from the absorption spectra but not necessarily from

the PL spectra. We performed magneto-absorption measurements up to a very high mag-

netic field at which the A-A splitting energy exceeds that of the exciton exchange interaction.

II. EXPERIMENTAL

The magnetic fields of up to 78 T were generated by a recently developed giant single-turn

coil (GSTC) method[9]. Magneto-optical absorption measurements on the chirality specific

SWNTs at room temperature were carried out at a near-infrared region. The SWNTs were

grown from alchohol catalityic CVD (ACCVD), and the SWNTs were dispersed in a liquid,

whose synthesis started with a mixture of PFO polymer, d-toluene, and acetic acid (PFO-
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ACCVD) [11]. The polymer of 9,9-dioctylfluorenyl-2,7-diyl refered as PFO was used as a

solvent for SWNTs [10]. The PFO-SWNTs exhibit a very sharp absorption spectral peak

owing to the well-defined chirality of the SWNTs. We focused on the absorption spectra

from the first inter-subband E11 transition exhibiting sharp spectral peaks.

The spectra at 0 T in Fig. 1 show the absorption of the PFO-ACCVD/d-toluene samples

measured in a glass cell with an inner thickness of about 2 mm. Owing to the significant

consequence of the high selectivity of the polymers, the number of different nanotube species

is substantially reduced. Hence, the spectra are well resolved and the underlying background

is significantly reduced (cf. [2, 3]). The full width at half maximum (FWHM) of the well-

defined peaks is typically 20 meV, which indicates high spectral sharpness compared with

that of SWNTs synthesized by other methods. Owing to the high selectivity, the spectral

peaks of (7,5), (7,6), and (8,6) can thus be regarded as only one chiral type of SWNT, and

are focused on in the analysis of A-A splitting expected to be observed in magnetic fields.

The optical transmission spectra in magnetic fields were measured using two different

systems. The first system is a nondestructive pulse magnet with an inner bore of 20 mm

and a pulse width of about 37 ms. The maximum accessible magnetic field is about 55

T for the discharge current supplied from a 990 kJ capacitor bank system [9]. For fields

higher than 55 T, we employed a GSTC system [9] which is capable of generating fields of

approximately 100 T in a room-temperature bore of 30 mm with a pulse width of about 80

µs. The operation is destructive since the coil explodes outwardly after the field is generated.

A maximum electric current of approximately 2-3 MA is injected into the GSTC from a 5

MJ high-speed capacitor bank system. The gate of an optical detector consisting of InGaAs

diode arrays is synchronously opened at the top of the pulse field , and the exposure time

was chosen to maintain the field variation within 3% during the gate operation (exposure

times: 1.5 ms and 5 µs, respectively, for the case of the nondestructive pulse magnet and

for the case of GSTC).

A Xe-flash arc lamp is used as a light source. The transmission signals transferred by an

optical fiber are dispersed by a 0.2 m grating polychromator. The sample cell is mounted in

the Voigt configuration with the incident light polarized parallel (E ∥ B) or perpendicular

(E ⊥ B) to the applied magnetic field (B) direction by alternating a linear polarizer attached

on the sample cell, and the absorption spectra were taken at the top of each magnetic field.

The liquid sample was held in the restricted space in the bore of the magnet by a hand made
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FIG. 1: Absorption spectra of PFO-ACCVD SWNTs at room temperature measured in pulse

magnetic fields. The k⃗ ⊥ B⃗ ( k⃗: light propagation vector) and E⃗ ∥ B⃗ (Voigt) configuration. Blue

lines are obtained from a nondestructive pulse magnet, and red lines are obtained from the GSTC.

O.D. is the optical density of the spectra.

miniature glass cell.

III. RESULTS AND DISCUSSION

In Fig. 1, the absorption spectra shown by blue lines are obtained by the nondestructive

pulse magnet, which generated a field of up to 54 T, at a temperature of 290 K. The

distinctive sharp peak for each chirality in the absence of a magnetic field gradually splits

into two peaks upon the application of the external magnetic field. It is evident from the

spectral evolution that a new peak appeared at the low-energy side of the main peak with

increasing magnetic field. According to the calculated dynamical conductivity, used by Ando

[12] to describe the absorption spectrum, this behavior clearly indicates the lower energy
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location of the dark excitons. This result is consistent with those reported by other groups

[4, 6–8, 13, 14]. The red lines in Fig. 1 are the spectra measured using the GSCT system of

magnetic fields of up to 78 T. Note that that each splitting is well separated but that peak

broadening becomes more pronounced in fields above 63 T.

The absorption spectrum for each chirality is deconvoluted by a Gaussian waveform,

and the results of the peak shifts and splitting are plotted against the magnetic field. The

peak splitting is insufficiently resolved for reliable spectral deconvolution at B < 35 T. The

obtained peak shifts are plotted against B taken from both the nondestructive long-pulse

magnet and the destructive short-pulse GSTC. Since the samples are ensembles of SWNTs,

two important factors must be considered. One is the magnetic field induced orientation of

the SWNTs in an aqueous solution [2, 15, 16]. The other is the ensemble average of the

magnetic field effectively applied parallel to the tube axis. The nematic order parameter

defined by S = 1
2
(3 < cos2θ > −1), is correlated to the optical anisotropy, defined by

A = (α∥ − α⊥)/(α∥ + 2α⊥), where θ is the average angle between the ensemble nanotubes

and the direction of B, and α∥ and α⊥ are the absorption intensity in the cases of B ∥ E

and B ⊥ E, respectively [15–17]. There is a large difference in < θ > between the two

experiments owing to the three orders of magnitude difference of the pulse rise time of the

magnetic field.

Furthermore, the absorption spectra in Fig. 1 are a result of convoluting the spectra of

all randomly oriented nanotubes; the effective Beff should be corrected to take account

of the contribution from all the randomly oriented nanotubes with respect to the mean

orientation < θ > directed by the external magnetic field. Hence Beff ∼ B∥ cos 30
◦, where

B∥ = B cos < θ >, and the correction term ∼ cos 30◦ is obtained from a simulation of the

spectrum convolution with the assumption that the peak intensity is proportional to sinφ

when the nanotube axis is tilted by an angle φ from the direction of B.

The peak splitting and normalized absorption intensities are plotted against the effective

magnetic field Beff in Fig. 2. A substantial reduction of Beff can be observed for the data

obtained from the GSTC owing to the three orders of magnitude faster rise time of the

magnetic field. The data obtained from two independent experiments are now smoothly

connected, and the fitted (dashed) lines consistently reproduce the experimental data up

to the highest field. The peak positions of the split spectra are fitted by the following

formula used in the two-level model, similarly to those employed in the previous studies
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FIG. 2: Change in the absorption and the normalized intensity of the spectral peaks for (7,5)-

chirality SWNTs plotted against the effective magnetic field Beff . Blue marks are results obtained

from the nondestructive pulse magnet, and red marks are those obtained from the GSTC. The

dashed lines are the results of fitting.

[7, 8]: E± = ±
√

∆bd
2 +∆A−A

2, where ∆bd represents the bright-dark zero-field splitting

and ∆A−A = µB is the so-called AB (or A-A) splitting energy. The normalized absorption

intensity in Fig. 2 is fitted by the formula I± = 1/2±∆bd/2
√
∆bd

2 +∆A−A
2. The parameters

∆bd and µex were determined so as to fit both sets of data in Fig. 2. A similar procedure

is successfully applied to the spectra of (7,6) chirality. However, for (8,6) chirality, the

spectral deconvolution becomes ambiguous at high magnetic fields owing to the higher energy

component of the split peak merging into the low-energy tail of the (7,6) spectral peak as

shown in Fig. 1.

As a result of the fitting shown in Fig. 2 for both (7,5) and (7,6) chiralities, the values of

dark- and bright-exciton splitting ∆bd, and of the coefficient µ determining the A-A splitting

in a magnetic field, given by ∆A−A = µBeff , are summarized in Table 1, together with the

positions of the dark and bright excitons in terms of energy. µex is 78% of µth, where
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Chirality d µex µth ratio ∆bd Lower State

[nm] [meV/T] [meV/T] µex/µth [meV]

(7,5) 0.83 0.73 0.93 0.78 6.8 Dark

(7,6) 0.89 0.77 0.98 0.78 9.3 Dark

TABLE I: Parameters obtained from the A-A splitting. d = nanotube diameter.
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FIG. 3: Bright-dark exchange splitting ∆bd plotted against the tube diameter. The present data

are compared with those from various previous works described in detail in the text.

µth = 3(πed2/2h)Eg, and Eg is given by 4πγ/3L, d and L the diameter and circumference

of the nanotube, respectively, and the band parameter γ is the same as defined in [1]. It

is considered that µth may be reduced for example by the effect of the magnetic field on

the exciton binding energy, although this is still insufficient to explain the overestimation

relative to the present experimental values. The present data suggest that the simple model

must be modified.

The values of bright-dark exchange splitting ∆bd are larger than those reported in previous

reports [6–8, 13, 14]. ∆bd is plotted against the tube diameter d together with the data
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obtained by other groups in Fig. 3. The present data agree reasonably well with some of

those obtained by Shaver et al.[7], by Srivastava et al. [14] and by Nish et al. [18]. The

splitting in magnetic fields is assumed to be proportional to 1/d which is predicted by tight-

binding theory (red dashed line) [19] or to 1/d2 according to Spataru et al. by first-principles

theory (blue dot-dashed line) [20]. In 2007, Shaver et al. used magnetic-field-induced PL

brightening in a stretch-aligned gelatin film containing individual SWNTs up to a high

pulsed magnetic field of 56 T [7]. All the other low-lying data below 6 meV in Fig. 3 were

obtained by PL in rather low magnetic fields except for the data obtained by Shaver et al.

in 2008 [13], who used a low-energy shift of a PL peak in magnetic fields to evaluate ∆bd

as a result of fitting in a magnetic field of 30-50 T. It is plausible that their value of ∆bd

is underestimated, since in the range of magnetic fields, the peak shifts are still affected by

the mixing of dark and bright states (see Fig. 4 in [13]).

Matsunaga et al. performed a micro-PL measurements of samples that were spatially

isolated [8]. They evaluated the values obtained from PL peak splitting in magnetic fields,

which should cause the energy shift symmetrically in the high- and low-energy directions,

using the same equation as us. Their high-energy peak, however, exhibited almost constant

values in magnetic fields. There is clearly a contradiction between the behavior of the data

and the formula used. Their values approximately coincide with ours after they are increased

twofold. Mortimer and Nicholas considered the temperature dependence of PL in the absence

and presence of a magnetic field (19.5 T), and evaluated the splitting using a model of the

PL thermal population [6]. They observed zero-field splitting due to stress induced by the

thermal expansion of ambient materials. As far as the effect of stress is comparable to that

of an external magnetic field, their values of ∆bd could be associated with a systematic error

and may not merit quantitative discussion. Some of the values reported by Srivastava et al.

[14] are also small. They conducted micro-PL measurements on individual HiPco SWNTs

on quartz substrates. Owing to the sharpness of the PL spectrum, they could determine

the precise positions of the PL peak splitting. Again, the high-energy PL peak behaved in a

strange manner, shifting to the lower energy side. Therefore, the application of the equation

described above is still contradictory, similarly to the case of Matsunaga et al. as mentioned

above.

The results obtained by by Jiang et al. [21] and Capaz et al. [22] employing the tight

binding approach are reasonably close to our values of ∆bd, as well as part of the data
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reported by Shaver et al. [13]. On the other hand, the theory of ab initio calculation

employed by Spataru et al. [20] leading to a value of approximately 30 meV still seems

to overestimate ∆bd. The physical reason for the 1/d2 dependence is explained by a long-

range contribution to the exchange energy according to the discussion in Capaz et al.[22].

However, as can be seen in Fig. 3, owing to limited sample size of the present data, it is

difficult to conclude whether the tube diameter dependence of ∆bd is 1/d or 1/d2. However,

present data together with those obtained by some of the previous authors favor the 1/d2

dependence.

The A-A splitting in SWNTs was first reported by Zaric et al. [2] as a result of magneto-

absorption and PL measurements in magnetic fields of up to 45 T, but owing to the unre-

solved splitting of the absorption peaks of ensemble nanotubes, they were unable to deter-

mine a precise value for µex. The A-A splitting measured up to 74 T was well described

by the model simulation, assuming an average splitting of 0.7-0.9 meV/T for samples with

various chiralities overlapping each other in their spectra [3], which agrees reasonably well

with the present data. Mortimer et al. [4] obtained the PL energy shifts due to A-A splitting

in SWNT solutions with different tube diameters at room temperature in magnetic fields

up to 58 T. They claimed that the A-A shifts follow quantitative predictions with values

being approximately 70% of those predicted for completely oriented nanotubes. However,

the experimental shifts were slightly larger than those expected after a 50% correction was

applied to take account of the random orientation of the ensemble nanotubes. Note that

the present value of µex is 0.78 times that of the calculated value for both chiralities in this

study [1].

IV. SUMMARY

In summary, the well resolved exciton A-A splitting was obtained from the high-field

magneto-absorption spectra of the E11 transitions in PFO-SWNTs. The A-A spectral peak

splitting and the exciton exchange energies were determined for samples with (7,5) and (7,6)

chiralities. The band-edge dark excitons were found to be located at a lower energy than

the bright excitons. The value of µex is almost 80% of that of µth obtained from theory.
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