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Abstract: A computational model was developed to study the thermal 
conductivity of single walled carbon nanotube (SWNT)-polymer composites. A 
random walk simulation was used to model the effect of interfacial resistance 
on heat flow in different orientations of SWNTs dispersed in the polymers. The 
simulation is a modification of a previous model taking into account the 
numerically determined thermal equilibrium factor between the SWNTs and the 
composite matrix material. The simulation results agreed well with reported 
experimental data for epoxy and polymethyl methacrylate (PMMA) composites. 
The effects of the SWNT orientation, weight fraction and thermal boundary 
resistance on effective conductivity of composites were quantified. The present 
model is a useful tool for the prediction of the thermal conductivity within a 
wide range of volume fractions of the SWNTs, so long as the SWNTs are not in 
contact with each other. The developed model can be applied to other polymers 
and even to solid materials like metals. 
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1. Introduction 
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The incorporation of SWNTs into composite materials can enhance their mechanical and 
electrical transport properties [1]. The presence of SWNTs can also enhance thermal transport 
[2,3], allowing possible applications of SWNTs in nanotube composite layers to be used as 
thermal shields and thermal conductors. Since SWNTs have unique properties [4], the properties 
and the full potential of SWNT-based composites, which have not yet been fully investigated, 
are expected to be superior. Uniform dispersion and alignment of nanotubes within the polymer 
matrix are fundamental requirements to produce composites with reproducible and optimal 
properties.  
 
Bryning et al. [5] reported thermal conductivity measurements of purified SWNT-epoxy 
composites prepared using suspensions of SWNT in N-N-Dimethylformanide and surfactant 
stabilized aqueous SWNT suspension. The volume fraction of SWNTs in epoxy varied from 0.1 
to 0.5%. The 0.5% volume fraction of SWNTs in epoxy enhanced the thermal conductivity by 
27% over pure epoxy. The average interfacial resistance, Rbd at the SWNT/matrix interface 
estimated by the effective medium theory was 4.27 x 10-8 m2K/W (the thermal boundary 
conductance, Kbd is 23.4 MW/m2K). Du et al. [6] prepared isotropic SWNT/PMMA composites 
by a coagulation method [7] with different wt% of SWNTs. They concluded that there was no 
significant increase in thermal conductivity for the nano-composites with loading up to 5wt%. It 
increased, however, significantly at 7wt % SWNT most likely due to the SWNT/SWNT 
junctions, a primary cause for higher thermal conductivity relative to the polymer matrix. The 
experimental data reviewed above were used to validate our computational model. Table 1 
shows the technical data of epoxy and PMMA and the velocity of sound used for the model 
validation. 
 
The presence of a resistance to the transfer of heat at the interface between the matrix material 
and the SWNT plays a very important role on the effective thermal conductivity. This thermal 
resistance is known as the Kapitza resistance [8]. According to the acoustic theory for the 
interpretation of thermal resistance [9], the average probability for transmission of phonons 
across the interface into the carbon nanotube, fm-CN is given by 

 
bdm

CNm RCC
f

ρ
4

=−     (1) 

where ρ is the polymer density; C is the matrix specific heat; Cm is the sound velocity in the 
matrix and Rbd is the thermal boundary resistance. Even though nanotube-nanotube junctions 
could offer resistance to the transfer of heat between nanotubes as described in [6], the 
assumption used in this work is that a nanotube-matrix-nanotube transfer results to a higher 
thermal resistance than nanotube-nanotube transfer. A distinction between 
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nanotube-polymer-nanotube and intimate nanotube-nanotube junctions is somewhat arbitrary, 
but it illustrates that phonons can be transferred from one nanotube to the next with or without 
the intermediate step of phonon transfer to the polymer. The Kapitza resistance at the 
matrix-SWNT interface is expected to play a dominant role in low %wt SWNT composites, and 
the nanotube-nanotube resistance is expected to play a significant role at high %wt SWNT 
composites. The preliminary molecular dynamics simulations of Maruyama et al. [10] showed 
the thermal boundary conductance between the SWNTs in a bundle is about 4 MW/m2K. This 
value is smaller than the values of the SWNT-epoxy and -PMMA, as found experimentally  
 
Tomadakis and Sotirchos [11] developed an algorithm to study the transport properties of 
random arrays of cylinders in a conductive matrix. However, the thermal resistance or the ratio 
of length to diameter of the dispersed phase was not taken into account. Duong et al. [12] 
developed a new algorithm by taking into account thermal resistance at the interface between 
carbon nanotube inclusions and matrix material. The developed algorithm was more effective 
than a typical random walk algorithm and much faster than a molecular dynamics algorithm 
[13,14]. The carbon nanotube thermal conductivity was treated as effectively infinite, obviating 
the need to model random walks within the nanotubes. However, the model was only applied for 
the case of multi-walled carbon nanotubes, as the diameter of used carbon nanotubes in the 
simulations was much larger than the diameter of SWNTs determined by experiments. In 
addition, the value of the thermal equilibrium factor (see further discussion in Section 2.3) was 
assumed to be one.  
  
The present work modifies the previous model by taking into account the thermal equilibrium 
factor and using the real experimental parameters for SWNT properties. The thermal 
equilibrium factor for cylindrical SWNTs and the polymers is determined by a numerical 
method. The developed model is validated by experimental data for epoxy [5] and PMMA [6]. 
The different weight fraction of SWNTs in the polymers and the role of thermal interfacial 
resistance on the effective thermal conductivity of SWNT-polymer composites are also 
quantified in this work.  

 

2. Simulation work 
2. 1. Parameters of the SWNT geometry used in the simulations   
According to experimental measurements [15], the SWNT diameter is usually not greater than 
3.0 nm, while the length of SWNTs dispersed in polymer can be up to several micrometers. 
Therefore, the aspect ratio of SWNTs, as found from experiments is extremely large. Choosing a 
proper ratio of SWNT length, L, over the individual SWNT diameter, D, such that the SWNTs 
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in the simulation runs represent well the experimental structure of the SWNT-polymer 
composite, is essential for the simulation runs, since it can reduce the computational domain 
size and the required simulation time. 
 
Through the effective medium theory, the effective thermal conductivity of a composite material 
is a function of the geometry factor. Two composites with the same geometry factor, even if this 
corresponds to different inclusion shapes, are equivalent. The geometry factor is defined as a 
function of the ratio of L/D as follows [16]: 
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Here Gf is the geometry factor and p = L/D.   
 
Figure 1 shows the geometry factor as a function of the aspect ratio L/D. As can be seen, when 
L/D is greater than 25, the geometry factor Gf is almost constant. This means that if the ratio 
L/D for the simulation runs is greater than 25, the effective thermal conductivity is no longer 
affected by the aspect ratio. To be conservative, the value L/D = 40 was used, and the SWNT 
diameter was set to be D = 2.4 nm.      
 

2.2. Computational Algorithm  
The computation of the effective transport coefficients is based on an off-lattice Monte Carlo 
simulation of 90000 walkers traveling in a computational cell for 100ns. The computational 
domain for the numerical simulation is a cubic cell with SWNTs dispersed into the polymer 
matrix. It is divided in 96 bins on each side of the cube. The computational cell is heated from 
one surface (the x = 0 plane) with the release of 90000 walkers distributed randomly and 
uniformly on that surface. The temperature distribution is calculated from the number of 
walkers found in each bin. The walkers exit at the surface opposite to the heated surface. The 
cell is periodic in the other two directions. The walkers move through the matrix material by 
Brownian motion [17]. The Brownian motion in each space direction is simulated with random 
jumps that each walker executes at each time step. These jumps take values from a normal 
distribution with a zero mean and a standard deviation 

tDmΔ= 2σ     (3) 

where Dm is the thermal diffusivity of the matrix material and Δt is the time increment. Such a 
Brownian motion model has been used successfully to model heat transfer due to diffusion in 
the case of convective flows [18-20]. The adequacy of the number of walkers, and of the size of 
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the computational domain, for the calculation of the effective thermal conductivity has been 
discussed in [12].  
 
Once a walker in the matrix reaches the interface between the matrix and a SWNT, the walker 
will move into the SWNT phase with a probability fm-CN, which represents the thermal resistance 
of the interface and will stay at the previous position in the matrix with a probability (1-fm-CN). 
Similarly, once a walker is inside a SWNT, the walker will re-distribute randomly within the 
SWNT with a probability (1-fCN-m) at the end of a time step, and will cross into the matrix phase 
with a probability fCN-m. 
 
In order to make the calculation of the effective thermal conductivity easy, we simulated heat 
transfer with constant heat flux through the computational domain, by releasing “hot” walkers 
constantly from one side of the domain and by releasing an equal number of “cold” walkers 
(carrying negative energy [21]) from the opposite side of the computational domain. The 
theoretical solution of this problem at steady state is a linear temperature profile whose slope is 
inversely proportional to the medium conductivity. This time-independent result was robust and 
trivial to fit, in contrast with the changing exponential profiles of a time-dependent problem.   
 
The model assumptions are: (1) walkers distribute uniformly once inside the SWNTs due to the 
high SWNT thermal conductivity; (2) the SWNTs are assumed to be dispersed in a way that 
they do not form bundles and do not bend, even though the algorithm is flexible enough to 
allow for the relaxation of this assumption. (One could allow the formation of bundles in the 
composite and, if the resistance to heat transfer between SWNTs were known, one could take it 
into account. One could also incorporate bending in the model by approximating a bent SWNT 
by a sequence of several rod-like SWNTs connected end-to-end). However the possible bundle 
effect is ignored in this work; (3) the transfer of heat is passive; (4) the thermal boundary 
resistance is the same for walkers coming in and out the SWNTs; (5) the volume fraction of 
SWNTs in every slice (i.e., every x plane) of the computational domain is equal to the volume 
fraction of the SWNTs in the composite, so that the weighted average of the product of the 
density times the heat capacity for a slice of the composite is the same throughout the domain; 
and (6) the boundaries on the y and z sides are treated as periodic, while those in the x 
(perpendicular to the applied flux) are treated as hard walls. More details about the random walk 
algorithm can be found in Duong et al. [12].  

 
2.3. Determination of the thermal equilibrium factor of SWNTs and polymers.   
By making the assumption that the thermal walkers move randomly inside the SWNTs and that 
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they are distributed with a uniform distribution instantaneously in the SWNTs, a length scale is 
removed from the physical problem. This length scale is the magnitude of the random Brownian 
jump that the thermal walkers should execute once inside the SWNTs. This assumption is very 
reasonable, when one takes into account that this length scale is very much larger than the size 
of the SWNT in our computational framework, because of the orders of magnitude difference in 
the thermal conductivity of the matrix and the SWNTs. In other words, during one time step in 
the computational model, the length scale that corresponds to the movement of a thermal walker 

in the matrix phase is of order σ while the movement of a thermal walker in the SWNT is much 
larger within the same time step. Furthermore, in thermal equilibrium, the average walker 
density within the SWNTs should be equal of that in the matrix, ensuring that the second law of 
thermodynamics is not violated. Since the walkers can exit a SWNT from anywhere on the 
SWNT surface even one time step after they enter into it, we must weight the exit probability 
fCN-m so that the flux of walkers into the SWNTs equals the flux of walkers going out when they 
are in equilibrium with the surrounding matrix. The weight factor depends only upon geometry, 
since its goal is to achieve the correct walker density inside and outside the SWNT. To maintain 
equilibrium, the probability of a walker to enter a SWNT when it collides with its surface 
coming from the matrix, fm-CN, and the probability of a walker to exit a SWNT when it collides 
with its surface coming from the SWNT interior, fCN-m, are related as follows: 

CNm
c

c
fmCN f

V
ACf −− =

σ     (4) 

where Ac and Vc are the surface area and the volume of a SWNT respectively; σ is the standard 
deviation of the random jump in the matrix and Cf is a geometry-specific coefficient that can be 
called the thermal equilibrium factor. Equation (4), thus, re-introduces a length scale into the 
system by using the ratio Ac/Vc.  
 
As already mentioned, the factor Cf guarantees that the second law of thermodynamics applies 
in our computational model. At thermal equilibrium there are two conditions that need to be 
satisfied: (a) the density of the thermal walkers inside the SWNTs and the density of the walkers 
in the matrix phase have to be equal, i.e., the temperature should be the same inside and outside 
the SWNTs, and (b) the heat flux into a SWNT has to be equal to the heat flux from the SWNT 
to the matrix phase, so that heat is not transferred from a cold to a hot area. Equating the total 
number of thermal walkers entering a cylindrical nanotube with the number of walkers exiting 
the nanotube, and assuming that Equation (4) holds, one can obtain the value for the thermal 

equilibrium factor ( )π21=fC  ≅ 0.28 for an infinite cylindrical inclusion in the matrix. 

This is done by taking into account that thermal walkers that enter a SWNT come from 
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distances away from the SWNT surface that follow a normal distribution with zero mean and a 

standard deviation equal to σ, integrating, thus, the expression for the normal distribution 
probability density function from the SWNT surface to infinity. However, since the nanotubes in 
the present case are finite instead of infinite cylinders, Cf was determined by a numerical 
procedure as follows: The random walk algorithm described above was used to simulate thermal 
equilibrium for the case of only one SWNT having D = 2.4 nm and L/D = 40 within the 
polymer cell. The computation cell used was 96 x 32 x 32 (cubic grid units) in the x, y and z 
directions, respectively. The SWNT having its axis parallel to the x direction was placed at the 
computational domain centre and the thermal walkers were released uniformly in the domain 
and were let to reach equilibrium (instead of being released at x = 0). The number of walkers in 
this numerical experiment was 98304 (96 x 32 x 32). Different values of Cf, ranging from 0.24 
to 0.31 with a 0.01 interval, were used in the simulation runs. This range of values was chosen 
because our theoretical analysis for the thermal equilibrium factor Cf that the thermal 
equilibrium factor for an infinite cylindrical inclusion in the matrix is approximately 0.28. After 
a long simulation time, the walker distribution inside the domain was plotted at different 
positions of the computational cell. The value of the thermal equilibrium factor Cf is the one 
resulting to a uniform distribution of the walkers inside and outside of the SWNT. Our 
simulation results showed that the appropriate thermal equilibrium value was Cf = 0.25, and this 
value was used to obtain all simulation results shown from now on. 
 
Figures 2a, b and c show the walker distribution in the cell after equilibrium is obtained on a 
surface parallel to the x axis and cut at grid point z =16, which is the middle of the cell. Figure 
2a shows that more walkers cross the interface and remain in the polymer matrix, violating the 
second law of thermodynamics. Figure 2c shows that more walkers remain outside the SWNT. 
Figure 2b shows that the density of walkers inside and outside the SWNT is almost the same, 
establishing thermal equilibrium. The slight variation in density at the surface is due to the 
choice of using a normal distribution for the steps of random walkers leaving the surface of the 
SWNT. 
   

3. Results and Discussion 
3.1. Model validation with the experimental data of SWNT-epoxy and -PMMA composites. 
The computational model is validated with two different kinds of polymers, epoxy and PMMA. 
Table 2 summarizes the used simulation parameters, the simulation runs done for the 
PMMA-polymer composites with different fm-CN, SWNT orientation and weight fraction of 
SWNTs in polymers. For each kind of the SWNT orientation in the computational cell and each 
value of thermal boundary resistance and weight fraction of SWNTs, the thermal conductivity is 
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the average of three simulations with different initial SWNT distributions.  
 
The simulation results were compared with the experimental data of Bryning et al. [5] for the 
SWNT-epoxy composites as shown in Figure 3. The weight fraction error of the experimental 

data of Bryning et al. [5] was reported to be ±10%. We ran the simulations with different values 
of the average probability for transmission of phonons across the interface into the SWNTs, 
fm-CN. We found that the value of fm-CN giving the best fit between the simulation results and the 
experimental data for this experimental work is 0.02. Applying the acoustic theory, the thermal 
boundary resistance can then be calculated by Equation 1 to be 4.01 x 10-8 m2K/ W, very close 
to 4.27 x 10-8 m2K/ W, the average thermal boundary resistance estimated by the effective 
medium theory [5, 16]. As can be seen in Figure 3, the simulation results fit very well with the 
experimental data using this specific value of fm-CN. The upper and the lower dashed curves 
indicate the maximum and minimum possible values of the thermal conductivity, respectively, 
as a function of the weight fraction of SWNTs dispersed in epoxy for the conditions reported in 
the experiments. Since the thermal boundary resistance between a SWNT and the epoxy has 
been obtained by the experimental data, this thermal boundary resistance of the SWNT-epoxy 
composites is then used for simulation runs with different weight fractions of the SWNTs and to 
determine the potential maximum and minimum of the SWNT-epoxy composites. The 
maximum thermal conductivity was obtained when all SWNTs were arranged with their axes 
parallel to the direction of the heat flux (the x direction) and the minimum thermal conductivity 
was obtained when all SWNTs were arranged with their axes perpendicular to the direction of 
the heat flux (the z-direction).  
 
Figure 4 shows simulation results compared to the experimental data of Du et al. [6] for the 
SWNT-PMMA composites. The upper and the lower dashed curves indicate the potential 
maximum and the minimum thermal conductivity, respectively, as a function of the weight 
fraction of SWNTs dispersed in PMMA for the experimental conditions of Du et al.[6]. The 

thermal conductivity error of this work was reported to be ±15%. The thermal boundary 
resistance calculated by the computational model is 9.53 x 10-9 m2K/W. The thermal 
conductivity determined by experiments at 7% weight fraction of SWNTs in PMMA is higher 
than the simulation results. The reason for the discrepancy is that at high weight fraction (and, 
thus, high volume fraction) of SWNTs, the SWNT/SWNT junctions and agglomeration can 
cause heat to move easier between SWNTs. The measured thermal conductivity for this case is 
higher than simulation results, because our model did not take into account this factor. The 
difference in thermal boundary resistance in the SWNT-epoxy and -PMMA composites is 
perhaps the result of nanotube type, dispersion quality, nanotube purity and length, or the 
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composite preparation procedure [5]. For example, raw SWNT material, not the highly purified 
SWNTs, often contains significant carbonaceous and metallic impurities on the SWNT surface, 
which can adversely affect composite performance and complicate the quantitative analysis of 
composite properties [5]. 
     
   

3.2. Effects of volume fraction of SWNTs and of thermal boundary resistance on the thermal 
conductivity of the SWNT- polymer composites  
The heat flow was studied in a 100nm size cubic cell containing 2.4nm-diameter SWNTs (these 
quantities are scaled). The SWNTs were perpendicular or parallel to the direction of heat flow or 
they were randomly oriented; in all cases the location of the SWNTs was random. The number 
of SWNTs in the cubic cell varied from 55 to 454 and depended on the weight fraction of 
SWNTs in the composite. The model of a SWNT composite material shown in Figure 5 is a 
realization of the case of disordered SWNTs at a weight fraction 0.10% and L/D = 40.0. The 
simulations were conducted with three different orientations of SWNTs dispersed in the 
composites (parallel to the heat flux, perpendicular to the heat flux, and randomly oriented), 
with different thermal resistance (fm-CN = 1.00, 0.50, 0.20, 0.02) and with different weight 
fraction of SWNTs (0.1%, 0.5% and 1.0%). The thermal conductivity was the average of three 
simulation runs with different initial SWNT random distributions. The matrix used for the 
simulations was PMMA. Figures 6 to 8 show the effective thermal conductivity of heat 
flux-parallel, randomly dispersed, and heat flux-perpendicular SWNT-PMMA composites, 
respectively, as a function of thermal boundary resistance with different weight fraction of 
SWNTs.  
 
With the same thermal boundary resistance and weight fraction, the random jump of walkers in 
the heat flow direction is less (meaning worse heat transfer) for the SWNTs perpendicular to the 
heat flux, higher for the random distribution of the SWNTs, and maximum for the SWNTs 
parallel to the heat flux. This allows the heat walkers to diffuse easier through the cell. 
Therefore, thermal conductivity increases in these cases as expected. With the same thermal 
boundary resistance, the ratio of the maximum and the minimum thermal conductivity increases 
when increasing the weight fraction of SWNTs. With the same weight fraction, this ratio 
decreases if the thermal boundary resistance increases. Duong et al. [22] studied the 
thermophysical properties of SWNTs aligned vertically inside PMMA and concluded that the 
effective thermal conductivity of the SWNT-PMMA composite with approx. 0.1wt% SWNTs 
could be enhanced significantly once the heat flow direction was parallel to the SWNT axes. So 
this work is complimentary to the experimental work of Duong et al. [22] to explain the unusual 
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thermal behavior of the SWNT-PMMA composite as measured by the photothermal radiometry 
technique.  
 
Note that the effective thermal conductivity, Keff, is still much lower than that calculated by the 
modified Maxwell theory for non-spherical inclusions, even in the case of heat transfer with 
SWNTs oriented parallel to the direction of heat transfer. The effective thermal conductivity can 
be calculated by the Maxwell theory modified by Rayleigh [23] as follows: 

( ) SWNTmeff KKK φφ +−= 1     (5) 

whereφ is the volume fraction of SWNTs; Km and KSWNT are the thermal conductivities of 

matrix and SWNTs respectively. The thermal conductivity of 0.1% weight fraction (2.35% 
volume fraction) of SWNTs (thermal conductivity in the range 1750-6600 W/m K) in epoxy can 
be calculated from equation 5 to be between 42.23– 156.01 W/mK, while the maximum thermal 
conductivity from the simulation is 1.02 W/mK (calculated as 5 times higher than the pure 
epoxy value, according to Figure 6). Note that the Maxwell equation does not take into account 
the effects of the thermal resistance at the matrix-inclusion interface, but it has been used in the 
past to make order of magnitude predictions for the performance of nanocomposites. The 
discrepancy observed in the present case demonstrates vividly the critical importance of the 
thermal resistance in the effective thermal conductivity. 
    
Figure 8 shows that the thermal conductivity of SWNT-PMMA composites is smaller than the 
pure PMMA when the SWNTs are perpendicular to the heat flow and the thermal boundary 
resistance is high. This is the result of a large number of SWNTs having very high thermal 
boundary resistance in the domain and forming a “fire wall” that blocks the walkers from 
moving forward in the cell. This causes the thermal conductivity to be reduced dramatically.    
  

4. Conclusions 
A computational model for systematically studying the thermal conductivity of SWNT-polymer 
composites using a random walk algorithm has been successfully developed. The simulation 
consumes much less time than molecular dynamics simulations. The simulation results agree 
well with experimental data for SWNT-PMMA and SWNT-epoxy composites. A key to the 
application of the numerical method is the determination of the thermal equilibrium factor of 
SWNTs and polymers. A computational method to determine this factor is presented.  
 
This model can be applied to any polymer and any solid materials with a very wide range of 
volume fraction of SWNTs in the matrix, given that the inclusions are not in contact with each 
other. The maximum and minimum possible thermal conductivity can thus be determined, 



 11

according to the orientation of the SWNTs in the composite. The model works well with a small 
weight fraction of SWNTs dispersed in polymers (up to 5wt% of SWNTs). When fewer SWNTs 
are dispersed in the polymers, more inclusions are not in contact with each other. This 
assumption appears to brake down with higher than 5wt% of SWNTs in the epoxy due to 
considerable contact between SWNTs (see Figure 4). However, the computational model is 
flexible enough to be able to incorporate nanotube-nanotube resistance, if one could obtain 
information about the value of the thermal resistance at the nanotube-nanotube junction. 
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Tables 
 

Table 1. Parameters of polymers used for the simulation validation. 

Polymers Epoxy PMMAb 

Density, ρ (g/cm3) 
Thermal conductivity, λ (W/m K) 

Specific heat, C (kJ/kg.K) 
Sound velocity, Cm (m/s) 

1.20 ± 0.02a 
0.198a 
1.22c 
2400d 

1.19b 
0.21b 
1.47b 
2400d 

      aBryning et al. [5] 
          bTechnical data of Elson Plant (http:// www.eslon-plant.jp) 

      ｃTechnical data of Dow (http://www.dow.com) 
      dBick et al. [24] 
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Table 2. Summary of the simulation parameters and simulation runs used for SWNT-PMMA 
composites 

Simulation 
parameters 

Computational cell: 100 x 100 x 100 nm3 (96 x 96 x 96 grid3) 
Number of walkers: 90000 (1 x 300 x 300) 
Time increment: 0.0025 ns  
SWNT diameter: 2.4 nm 
Ratio of L/D: 40 
Thermal equilibrium value Cf: 0.25 

SWNT 
orientation in 

the cell 

(1) SWNTs are perpendicular to the heat flux. 
(2) SWNTs are parallel to the heat flux. 
(3) SWNTs are randomly dispersed in polymers 

 
 

Weight fraction 
of SWNTs, wt%  

 

 
 

Number of 
SWNTs 

Matrix probability, fm-CN 

0.02 0.20 0.50 1.00 

Thermal boundary resistance, Rbd  [10-8m2K/W] 
  (Thermal boundary conductance, Kbd [MW/ m2K])  

SWNT-PMMA composites 

5.50 
(18.2) 

0.55 
(181.8) 

0.22 
(454.5) 

0.11 
(909.1) 

SWNT-epoxy compositese 

5.69 
(17.6) 

0.57 
(175.4) 

0.23 
(434.8) 

0.11 
(909.1) 

0.10 
0.50 
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eSimulation runs were done for the model validation with experimental data [5]  
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Figure Captions 
 

Figure 1. Effect of the aspect ratio L/D on the geometry factor. 
Figure 2. Walker distribution at the surface parallel to the x axis at the middle of the cell, at z = 

16, with different thermal equilibrium factors: (a) Cf = 0.28; (b) Cf = 0.25; and (c) Cf = 
0.24. 

Figure 3. Validation of the computational model with comparison to experimental data for 
SWNT-epoxy composites. The upper and the lower dash curves indicate the potentially 
maximum and the minimum thermal conductivity, respectively. Dots on the dashed curves 
indicate the simulation results. The best fit line to the data (solid line) yields an fm-CN 

consistent with physical data. 

Figure 4. Validation of the computational model with comparison to experimental data of 
SWNT-PMMA composites. The upper and the lower dash curves indicate the potentially 
maximum and the minimum thermal conductivity, respectively. Dots on the dashed curves 
indicate the simulation results. The best fit line to the data (solid line) yields an fm-CN 

consistent with physical data. 

Figure 5. A model of SWNT composites material. The composite shown here is a realization of 
the case of disordered SWNTs at a weight fraction 0.10% and L/D = 40.0. 

Figure 6. Effective thermal conductivity of SWNT-PMMA composites with SWNTs oriented 
parallel to the heat flux as a function of thermal boundary resistance with different weight 
fraction of SWNTs. For each value of thermal boundary resistance and weight fraction of 
SWNTs, the thermal conductivity is the average of three simulations with different initial 
SWNT distributions.  

Figure 7. Effective thermal conductivity of randomly dispersed SWNT-PMMA composites as a 
function of thermal boundary resistance with different weight fraction of SWNTs. For 
each value of thermal boundary resistance and weight fraction of SWNTs, the thermal 
conductivity is the average of three simulations with different initial SWNT distributions.  

Figure 8. Effective thermal conductivity of SWNT-PMMA composites with SWNTs oriented 
perpendicular to the heat flux as a function of thermal boundary resistance with different 
weight fraction of SWNTs. For each value of thermal boundary resistance and weight 
fraction of SWNTs, the thermal conductivity is the average of three simulations with 
different initial SWNT distributions. 
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Figure 1. Effect of the aspect ratio L/D on the geometry factor. 
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(c) 
Figure 2. Walker distribution at the surface parallel to the x axis at the middle of the cell, at z = 

16, with different thermal equilibrium factors: (a) Cf = 0.28; (b) Cf = 0.25; and (c) Cf = 
0.24. 
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Figure 3. Validation of the computational model with comparison to experimental data for 

SWNT-epoxy composites. The upper and the lower dash curves indicate the potentially 
maximum and the minimum thermal conductivity, respectively. Dots on the dashed curves 
indicate the simulation results. The best fit line to the data (solid line) yields an fm-CN 

consistent with physical data.

Weight fraction of SWNTs, % 

K
ef

f /K
m
 

Experimental data, Bryning et al. [5] 
Simulation results 
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Figure 4. Validation of the computational model with comparison to experimental data of 
SWNT-PMMA composites. The upper and the lower dash curves indicate the potentially 
maximum and the minimum thermal conductivity, respectively. Dots on the dashed curves 
indicate the simulation results. The best fit line to the data (solid line) yields an fm-CN 

consistent with physical data. 

 
Figure 5. A model of SWNT composites material. The composite shown here is a realization of 

the case of disordered SWNTs at a weight fraction 0.10% and L/D = 40.0. 
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Figure 6. Effective thermal conductivity of SWNT-PMMA composites with SWNTs oriented 

parallel to the heat flux as a function of thermal boundary resistance with different weight 
fraction of SWNTs. For each value of thermal boundary resistance and weight fraction of 
SWNTs, the thermal conductivity is the average of three simulations with different initial 
SWNT distributions. 

Thermal boundary resistance, Rbd [10-8m2K/W] 

K
ef

f /K
m
 

1.0% wt SWNTs 
0.5%wt SWNTs 
0.1%wt SWNTs 



 21

0.0

2.5

5.0

7.5

0.0 2.5 5.0 7.5  

 
Figure 7. Effective thermal conductivity of randomly dispersed SWNT-PMMA composites as a 

function of thermal boundary resistance with different weight fraction of SWNTs. For 
each value of thermal boundary resistance and weight fraction of SWNTs, the thermal 
conductivity is the average of three simulations with different initial SWNT distributions. 
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Figure 8. Effective thermal conductivity of SWNT-PMMA composites with SWNTs oriented 

perpendicular to the heat flux as a function of thermal boundary resistance with different 
weight fraction of SWNTs. For each value of thermal boundary resistance and weight 
fraction of SWNTs, the thermal conductivity is the average of three simulations with 
different initial SWNT distributions. 
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