Fluorescence and Raman spectroscopy of single-walled carbon-13 nanotubes

○ Yuhei Miyauchi, Shohei Chiashi, and Shigeo Maruyama

Department of Mechanical Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Photoluminescence [1] and Raman scatterings of single-walled carbon nanotubes (SWNTs) synthesized from isotopically-modified ethanol were studied. Using Alcohol catalytic CVD (ACCVD) technique optimized for the efficient production of SWNTs from very small amount of ethanol, SWNTs consisting of carbon-13 isotope (SW¹³CNTs) were synthesized in addition to normal SWNTs consisting of mainly ¹²C. The vibrational features of SW¹³CNTs were compared with those of normal SWNTs through NIR-luminescence mapping and Raman spectroscopy.

Fig. 1 compares Raman scattering spectra for SW¹³CNTs and normal SWNTs excited with 488 nm laser. Small D-band signal at 1350 cm⁻¹ suggests that high quality SWNTs were synthesized from tiny amount of ethanol. There was almost no change in Raman spectra shape for SW¹³CNTs but the Raman shift frequency was $\sqrt{12/13}$ times smaller because of the heavier carbon atoms.

In addition to Raman spectroscopy, we have mapped the NIR-luminescence of D_2O -surfactant dispersions of both SW¹³CNTs and normal SWNTs. By comparing the two maps, luminescence peaks corresponding to electronic transitions with vibrational excitation were identified.

Fig. 1 Raman spectra of (a) SW¹³CNTs (b) normal SWNTs.

[1] S.M. Bachilo, et al., Science 298 (2002) 2361

Corresponding Author: Shigeo Maruyama

E-mail: maruyama@photon.t.u-tokyo.ac.jp, Tel/Fax: +81-3-5800-6983