Photoluminescence of carbon nanotubes suspended in air

<u>S. Iwasaki¹</u>, Y. Ohno^{1, 2}, Y. Murakami³, S. Kishimoto¹, S. Maruyama³, and T. Mizutani¹ ¹Dept. of Quantum Eng., Nagoya Univ., Japan ²PRESTO/JST, Japan ³Dept. of Mechanical Eng., The Univ. of Tokyo, Japan

The optical transition energies in SWNTs are affected by the environmental condition because the electric field contributing carrier-carrier interactions spreads out of the SWNT. SWNTs suspended in air are important to investigate the environmental effect [1]. We have measured the PL and PLE of the SWNTs suspended in air for 21 chiralities, and compared them to the results reported for SDS-wrapped SWNTs [2].

An SEM image of our sample is shown in Fig. 1. The SWNTs suspended in air were grown on a grated quartz substrate by alcohol CVD. Figure 2 shows the energy shifts of E_{11} and E_{22} from those of SDS-wrapped SWNTs, ΔE_{11} and ΔE_{22} , as a function of the chiral angle. Here, the closed circles and open squares represent type-I [$(2n+m) \mod 3 = 1$] and type-II [$(2n+m) \mod 3 = 2$] SWNTs, respectively. The E_{11} and E_{22} are mostly blueshifted by a few tens of meV, except for E_{22} of type-I SWNTs with a small chiral angle, which show a redshift. ΔE_{11} and ΔE_{22} show different dependences on the chiral angle between type-I and type-II. In the case of type-I SWNTs, ΔE_{11} is smaller for the larger chiral angle whereas ΔE_{22} is larger for the larger chiral angle. In contrast, type-II SWNTs shows the opposite dependences. The difference between type-I and type-II disappears for the SWNTs with the chirality near armchair. These results show that the environmental effect on optical transition energies depends on the chirality (*n*, *m*).

Fig.1. SEM image of sample.

Fig.2. Chiral angle dependence of ΔE_{11} , ΔE_{22}

References:

[1] J. Lefebvre *et al. Phys. Rev. Lett.* **90** (2003) 217401.
[2] R. B. Weisman *et al. Nano Lett.* **3** (2003) 1235.

Yutaka Ohno Dept. of Quantum Eng., Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan Tel: +81-52-789-5387, FAX +81-52-789-5232 E-mail: yohno@nuee.nagoya-u.ac.jp