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ABSTRACT 

 Several heat transfer problems related to single-
walled carbon nanotubes (SWNTs) are considered 
through molecular dynamics (MD) simulations. MD 
simulations of thermal conductivity along a nanotube, 
isotope effect in longitudinal thermal conductivity, and 
thermal boundary resistance in a junction of nanotubes 
are reviewed. Then, the heat transfer from an SWNT to 
various surrounding materials is simulated by MD 
simulations. Heat transfer between nanotubes in a 
bundle of nanotubes and between a nanotube and 
water are considered. The heat transfer rate can be 
well expressed by employing the thermal boundary 
resistance (TBR). The value of thermal boundary 
resistance is compared for nanotube-junction, bundle, 
and water-nanotubes cases. 
 
INTRODUCTION 

Single-walled carbon nanotubes (SWNTs) [1] have 
remarkable electrical, optical, mechanical, and thermal 
properties [2, 3]. In this paper, the thermal properties 
and heat transfer issues are considered from molecular 
dynamics (MD) simulations. 

We have been studying the heat conduction along a 
SWNT by MD method [4-7] with the simplified form [8] 
of Tersoff-Brenner bond order potential [9]. Our 
preliminary results showed that thermal conductivity 
was strongly dependent on the nanotube length for 
realistic length scale for device applications [5, 6]. 
Furthermore, we have reported the direct calculation of 
phonon dispersion relations and phonon density of 
states from molecular dynamics trajectories [5, 6]. For 
more practical situations, the isotope effect on thermal 
conductivity and thermal boundary resistance in a 
nanotube junction were discussed from MD simulation 
results [7].  

In addition to the thermal conductivity along a SWNT, 
heat transfer from a nanotube to the surrounding 
material is quite important for the practical applications 
using carbon nanotubes as electrical devices and 
composite materials [7]. In this paper, in addition to a 
review of simulations of thermal conductivity, isotope 
effect, and thermal boundary resistance of a junction, 
the heat transfer from an SWNT to various surrounding 
materials is simulated by MD simulations. Heat transfer 
between nanotubes in a bundle of nanotubes and 
between water and a nanotube are considered. The 
heat transfer rate can be well expressed by the thermal 
boundary resistance (TBR). The value of thermal 
boundary resistance is compared for nanotube-junction, 
bundle, and water-nanotubes cases. 

 
SIMULATION TECHNIQUE 

The Brenner potential [9] with the simplified form [8] 
is employed as the potential function between carbon 
and carbon within a nanotube. This potential can 

describe variety of small hydrocarbons, graphite and 
diamond lattices. The basic formulation of the potential 
is based on the covalent-bonding treatment developed 
by Tersoff [10]. The total potential energy of the system 
Eb is expressed as the sum of the bonding energy of 
each bond between carbon atoms i and j.  
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where VR(r) and VA(r) are repulsive and attractive force 
terms, respectively. The Morse type form with a cut-off 
function f(r) expresses these terms. 
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 The effect of the bonding condition of each atoms is 
taken into account through B*

ij term which is the 
function of angle θijk between bonds i-j and i-k. 
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Constants are shown in Table 1. Here, we have 
employed the parameter set II (table 2 in [9]), which 
better reproduces the force constant. 

Here, we have ignored [8] the term for the conjugate 
bond from original expressions of Brenner. The velocity 
Verlet method was adopted to integrate the equation of 
motion with the time step of 0.5 fs. 
 
HEAT CONDUCTIVITY OF SWNTs 

In our previous reports [4-7], thermal conductivity was 
calculated from the measured temperature gradient and 
the heat flux obtained by the energy budgets of 
phantom molecules. After obtaining the average 
temperature of about 300 K or 100 K with the auxiliary 
velocity scaling control, typically 1 ns simulations were 
performed for the equilibration with only phantom 
temperature control. Then, typically 2 ns calculation 
was used for the measurement of temperature 
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distribution, with 20 K temperature difference. With 
energy budgets of controlling phantom molecules, the 
heat flux along the tube can be simply calculated. 
Combined with the temperature gradient, the thermal 
conductivity λ can be calculated through Fourier's 
equation,  

z
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∂
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As the definition of cross-sectional area A of a 
nanotube, 2 different definitions are possible. One is to 
use the area of a hexagon dividing a bundle of SWNTs 
[4, 7]: ( )22/2/32 bdA += , where b is van der Waals 
thickness 0.34 nm.  On the other hand, ring of van der 
Waals thickness: πbd can also be a proper definition [5, 
6]. The former definition is appropriate for the 
calculation of   amount of heat which can be conducted 
by nanotubes packed in a limited cross-sectional area. 
This definition is also essential for the measurement of 
the enhancement of thermal conductivity with a double-
walled carbon nanotube (DWNT) or peapod. Here, 
DWNT is made of 2 concentric SWNTs and peapod is 
an SWNT filled with fullerene inside. On the other hand, 
the latter definition is suited for comparison of SWNTs 
with different diameters [5, 6], because the thermal 
conductivity should be primarily proportional to the 
circumferential length of a nanotube.  

The calculated thermal conductivity for a finite length 
nanotube was not as high as the previously reported 

result that it might be as high as 6600 W/mK at 300 K 
[11]. However, the thermal conductivity is much higher 
than high-thermal conductivity metals. The dependence 
of the thermal conductivity on the nanotube length [6] is 
summarized in Fig. 1. The thermal conductivity was 
diverging with the power-law characteristics with 
nanotube length [5, 6] at least up to the 0.4 µm long 
nanotube for (5, 5). This divergence is most dominant 
for the smallest diameter nanotube (5, 5). This very 
striking behavior of thermal conductivity is similar to the 
one-dimensional model calculations of thermal 
conductivity [12, 13] where the divergence of λ with the 
power of 0.35 or 0.4 is discussed. It seems that the 
one-dimensional feature of heat conduction is really 
possible with the real material: the small diameter 
carbon nanotube. The thermal conductivity may 
converge when the tube length is much longer than the 
mean free path of energy carrying phonon. However, 
the thermal conductivity of about 600 W/mK for about 
0.4 µm tube is still steadily increasing with the exponent 
of 0.27 in Fig. 1. 
 
EFFECT OF ISOTOPE FOR HEAT CONDUCTION 

Thermal conductivity of nanotube with randomly 
distributed 13C with various ratios was calculated in our 
previous paper [7]. A preliminary result is shown in Fig. 
2. Here, (5, 5) nanotube with about 50 nm was tested. 
The dependency of thermal conductivity on isotope 
ratio was well explained with the following equation as 
the fit lines in Fig. 2.  
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where β is the ratio of 13C, 12pureC
λ  is the thermal 

conductivity for pure 12C, C1 is the fitting parameter. It is 
also noted that the thermal conductivity at 100 K is not 
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Fig. 1   Dependence of thermal conductivity on length 

of nanotubes for 300 K [6]. 
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Fig. 2  Effect of 13C isotope on thermal conductivity of 
SWNT [7]. 

Table 1.  Parameters for Brenner potential 
De [eV] Re [Ǻ] S R1 [Ǻ] R2 [Ǻ]

6.0 1.39 1.22 1.7 2.0 
β [Ǻ-1] δ a0 c0 d0 

2.1 0.5 0.00020813 330 3.5 
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realistic in Fig. 2 because the classical simulation 
cannot reproduce the correct change of heat capacity at 
low temperature [6]. The mechanism of the decrease of 
thermal conductivity with isotopes should be further 
discussed. 
 
THERMAL RESISTANCE AT A SWNT JUNCTION 

One example of the interesting feature is the thermal 
boundary resistance at the junction of nanotubes with 
different chiralities. The simulation system is shown in 
Fig. 3. In this case a (12, 0) zigzag nanotube in the left-
hand side and a (6, 6) armchair nanotube were 
smoothly connected using 5-membered and 7-
membered rings at the junction. By applying different 
temperatures at each end, temperature distribution was 
measured as in Fig. 4. The temperature jump at the 
junction is clearly observed. This temperature jump can 
be modeled by assuming that there is a virtual 
boundary between two nanotubes with different 
structures. The thermal boundary resistance at this 
virtual interface should be defined as follows.  
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The thermal boundary resistance of the junction is 
calculated as 7.0×10-11 [m2K/W] using the values in 

Table 2. Here, the cross-sectional area was defined as 
πbd. 
 
THERMAL BOUNDARY RESISTANCE OF SWNT 
BUNDLE 

Simulation Techniques 
In addition to Brenner potential between carbon 

atoms within an SWNT, van der Waals force between 
carbon atoms in different SWNTs was expressed as 12-
6 Lennard-Jones potential with parameters in Table 3.  

As the initial condition, 7 SWNTs whose length were 
5 nm were located in the 5×6×6 [nm] simulation cell as 
in Fig. 5. The geometrical structure of SWNT was 
armchair type (5, 5) with diameter 0.693 nm. From the 
start of the calculation, the whole system was kept at 
300K for 100ps. Then, the temperature of only the 
central SWNT was suddenly increased to 1000K using 
the velocity scaling method for 10 ps. After this, all 
temperature control were stopped.  
 

Results and Discussion  
Fig. 6 shows temperature change of hot (central) 

tube and cold (surrounding) tubes. The heat transfer 
from central tube to surrounding tubes is clearly 
observed in Fig. 6. In order to examine this heat 
transfer, temperature difference of central and 
surrounding tubes is drawn in Fig. 7. The monotonic 
decay of temperature difference in Fig. 7 was well 

(12,0) d = 0.95 nm (6,6) d = 0.83 nm(12,0) d = 0.95 nm (6,6) d = 0.83 nm(12,0) d = 0.95 nm (6,6) d = 0.83 nm

 
Fig. 3 Junction of two different SWNTs. 
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Fig. 4 Temperature jump at the junction by thermal 

boundary resistance. 

Table 3.  Parameters for L-J potentials 

 σ [nm] ε [meV] 
Carbon-Carbon 0.337 2.400 
Carbon-Water 0.319 0.674 

Table 2 Parameters used for TBR calculation of 
junction 

d [nm] A [nm2] ∆T [K] Q [W] 
0.83194 0.889 4.05 5.16×10-8 

 
Fig. 5  Initial condition of SWNT bundle simulation. 
The central tube is suddenly heated up to 1000K. 
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approximated by an exponential function in Eq. (10) 
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where 

][7.29,][8750 psKT == τ  

If an SWNT is considered to be a solid material and 
heat transfer from the central tube to surrounding tubes 
is expressed by heat transfer coefficient or thermal 
boundary resistance (inverse dimension of heat transfer 
coefficient), the lump method in Eq. (11) can be 
adopted, since the characteristic length of an SWNT is 
extremely small. The diameter of SWNT is about 1 nm 
and the Biot number in Eq. (12) becomes very small.  
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The excellent agreement to an exponential fit by Eq. 
(10) in Fig. 7 is understood by this concept. Comparing 
Eq. (10) with Eq. (11), the thermal boundary resistance 
R was estimated. By using values in Table 4, the 
thermal boundary resistance between SWNTs in a 
bundle was about 6.46×10-8 [m2K/W].  

The thermal conductivity of SWNT was estimated to 
be about 1000 W/mK in axial direction. One of the 
characteristics of heat transfer of SWNT is the strong 
anisotropy. By using the thermal resistance, axial and 
radial heat conduction are compared as follows. 

For an SWNT with length L, thermal resistance of 
axial direction is expressed as 

λA
LRaxial =  (13) 

where A is the cross-sectional area. On the other hand, 
the thermal resistance in radial direction is represented 
as 

Sh
Rradial

1
=  (14) 

where S is the cylindrical surface area. The length of an 
SWNT with which these thermal resistances are equal, 
can be the characteristic length of the thermal boundary 
resistance. Here, we define the characteristic length of 
TBR (LTBR) as 
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By using Eq. (15), the characteristic length of TBR for 
the SWNT bundle is calculated as 0.105 µm as in Table 
4. In other words, when the length of SWNT is 0.105 
µm, the thermal resistance of axial direction and that of 
radial direction are similar. Suppose you are using an 
SWNT as a promotor of heat conduction as a 
composite material, thermal boundary resistance 
determines the performance for a shorter nanotube 
than LTBR. 

 
 
THERMAL BOUNDARY RESISTANCE BETWEEN 
SWNT AND WATER 

Simulation Techniques 
The Brenner potential was used between carbon and 

carbon. Water molecules were expressed by SPC/E 
potential [14]. SPC/E potential is expressed as the 
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Fig. 6  Temperature change of hot (central) SWNT 

and cold (surrounding) SWNTs. 
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Fig. 7  Change of the temperature difference. 
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superposition of Lennard-Jones function of oxygen-
oxygen interaction and the electrostatic potential by 
charges on oxygen and hydrogen as follows. 
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where R12 represents the distance of oxygen atoms, 
and σOO and εOO are Lennard-Jones parameters. The 
Coulombic interaction is the sum of 16 pairs of point 
charges. 

The potential function between water molecules and 
carbon atoms are represented by Lennard-Jones 
function (with parameters in Table 3) and the 
quadropole interaction term [15].  

One (10, 10) SWNT with length 20.118 nm and 192 
water molecules inside it were prepared in the 
20.118×10×10 nm fully-periodic simulation cell as in Fig. 
8. 

At the initial stage of simulation, water molecules and 
the SWNT were equilibrated at temperature of 300 K. 
Then, only the temperature of the SWNT was suddenly 
heated up to 1000K. And all temperature control was 
stopped. 
 

Results and Discussion 
Fig. 9 shows the temperature change of the SWNT 

and water molecules. The heat transfer from hot SWNT 
to water is observed. Fig. 10 shows temperature 
difference. Again an exponential fit in Eq. (10) is 
possible with following parameters.  

][8.16],[6590 psKT == τ   

The thermal boundary resistance is estimated to be 
1.22×10-7 [m2K/W] using the lump method similarly to 
the case of SWNT bundle simulation.  

The characteristic length of TBR between the SWNT 
and water molecules is also calculated using Eq. (15) 
as 0.204µm.  

 
CONCLUSIONS 

The thermal boundary resistances related to an 
SWNT are calculated by molecular dynamics method.  

When SWNTs which have different chiralities are 
joined, the thermal boundary resistance of the junction 
are estimated to be 7.0×10-11 [m2K/W]. On the other 
hand, the thermal boundary resistance between the 
SWNTs in a bundle or between the SWNT and water 
was estimated to be 6.46×10-8 [m2K/W] or 1.22×10-7 
[m2K/W], respectively.  
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Fig. 10  Change of the temperature difference. 

Table 4. The characteristic length of TBR 
 S [nm2] ρV [kg] C [J/kgK] R [m2K/W] LTBR [µm] 

SWNT and SWNT 18 7.97×10-24 1039 6.46×10-8 0.105 
SWNT and Water 28.8 5.74×10-24 692 1.22×10-7 0.204 

 
Fig. 8 Initial condition of the SWNT and Water molecules simulation. 
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Fig. 9  Temperature change of SWNT and Water. 
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In order to compare these values with SWNT�s axial 
thermal conductivity, we define the characteristic length 
scale of thermal boundary resistance. The values are 
calculated as 0.105 µm in the SWNT bundle case, and  
0.204 µm in the SWNT and water molecules case, 
respectively.  

 
NOMENCLATURE 
A cross section area of a SWNT [m2] 
Bi Biot number 
c specific heat [J/kg K] 
e charge of electron [J] 
h heat transfer coefficient [W/m2K] 
L length of nanotube [m] 
q heat flux per area [W/m2] 
Q heat flux [W] 
R thermal boundary resistance [m2K/W] 
S surface area [m2] 
T temperature [K] 
V volume [m3] 
VA Attractive term of Brenner potential [J] 
VR Repulsive term of Brenner potential [J] 
ε L-J potential parameter [J] 
ε0 dielectric constant [F/m] 
λ thermal conductivity [W/mK] 
ρ density [kg/m3] 
σ L-J potential parameter [Ǻ] 
τ fitting parameter [s] 
Subscripts 
axial  axial direction 
cold cold (surrounding) SWNT  
hot hot (central) SWNT 
radial radial direction 
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