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ABSTRACT 

Heat conduction of finite length single walled carbon nanotubes (SWNTs) was 

simulated by the molecular dynamics method with Tersoff-Brenner bond order potential. 

Temperature at each end of a SWNT was controlled by the phantom technique, and the 

thermal conductivity was calculated with Fourier’s law from the measured temperature 

gradient and the energy budgets in phantom molecules. The measured thermal conductivity 

did not converge to a finite value with increase in tube length up to 404 nm, but an interesting 

power law relation was observed. The phonon density of states and photon dispersion 

relations were directly extracted from simulation results for further analysis of heat 

conduction mechanism based on the phonon concept. 

 

INTRODUCTION 

The discovery of single-walled carbon nanotubes (SWNTs) in 1993 [1] has opened the 

fascinating new scientific and technological research fields. Many exciting physical properties 

of this new form of carbon have been revealed [2, 3]. Among them, the thermal conductivity 

of carbon nanotubes, which is speculated to be higher than any other material along the 
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cylindrical axis [4], is examined in this paper. Recently, measurements of thermal 

conductivity of a 5 µm thick deposited “mat” of SWNTs were reported for randomly oriented 

[5] or magnetically aligned conditions [6]. Comparing with the temperature dependence of 

electrical conductance in the same condition, it was concluded that the contribution of 

electrons to the thermal conductivity is negligible in all temperature range [5, 6]. The direct 

measurements of individual nanotube (multi-walled carbon nanotubes, MWNTs) were also 

tried with the scanning thermal microscopy [7] and with MEMS assisted new measurement 

technology [8]. On the other hand, several molecular dynamics simulations [4, 9, 10] showed 

very high thermal conductivity such as 6600 W/mK at 300 K [4]. However, the estimated 

values of thermal conductivity were widely different from one another, even though the same 

Tersoff-Brenner potential [11] was employed. The most important difficulty was the 

convergence in frequency space and some extrapolations. Here, a finite length SWNT without 

the use of periodic boundary condition was simulated. The length-dependent thermal 

conductivity was calculated in the range of a few hundreds nanometers, which might be the 

size of future nanotube devices. In addition, the thermal conductivity of infinitely long 

nanotube could be approached with collections of physically meaningful length dependent 

results. The reported peaking phenomena [4, 9] of temperature dependence of thermal 

conductivity were also curious because no quantum corrections in the heat capacity were 

applied. Some simulation results about the temperature dependence are addressed. 

Another purpose of this study is the preliminary connection of molecular dynamics 

techniques to the solid-state heat conduction usually discussed as “phonon transport” in solid 

physics [12]. In principle, the molecular dynamics simulation can be used to obtain 

information for phonon transport dynamics such as phonon dispersion relation, group velocity, 

mean free path, boundary scattering rate and the rate of phonon-phonon scattering (Umklapp 

process). Especially, the phonon scatting at an interface is very important issue in recent thin 



film technology [13]. It is also anticipated that by developing the phonon concept to more 

general form in order to understand the thermal boundary resistance even in the liquid-solid 

interface [14]. As the first step, the direct calculation of phonon density of states and phonon 

dispersion relations from the molecular trajectories are demonstrated in this paper. 

 

SIMULATION TECHNIQUE 

Three armchair type SWNT structures with different diameters (5, 5), (8, 8), and (10, 

10) in Figure 1 were chosen. Here, the chiral vector (n, m) (or chiral index) uniquely 

determines the geometrical structure of SWNTs [2, 3]. SWNTs with (10, 10) have been most 

widely studied because it was speculated that the laser-oven grown SWNTs [15] might have 

predominantly (10, 10) structure. However, recent studies showed the fairly random 

distribution of chiralities [16].  On the other hand, (5,5) has the almost same diameter as C60, 

and the large-scale production of SWNTs with this diameter is anticipated with the new 

generation technique using high-pressure and high-temperature CO gas [17].  

The Brenner potential [11] with the simplified form [18] was employed as the 

potential function with the parameter set II (table 2 in [11]), which better reproduced the force 

constant. The velocity Verlet method was adopted to integrate the equation of motion with the 

time step of 0.5 fs. By applying the phantom heat bath model [19] to each end of a SWNT, the 

temperature difference was applied as in Figure 1(e). While one unit-cell molecules were 

fixed, one unit-cell molecules next to them were controlled by the Langevin equation. Here, 

no periodic boundary condition was applied to handle the finite size effect of carbon 

nanotubes. For the normal infinite length simulation, it is often discussed that the cell length 

of periodic boundary condition should be larger than the “mean free path” of phonon, which 

is argued to be order of 1 µm. Here, the physically meaningful nanotube length was varied 

from 6 nm through 404 nm for (5, 5) nanotube. With our configuration, thermal conductivity 



was calculated from the measured temperature gradient and the heat flux obtained by the 

energy budgets of phantom molecules.  

 

RESULTS AND DISCUSSIONS 

Thermal Conductivity 

An example of the temperature distribution along the tube is shown in Figure 2 for 

202 nm long (5, 5) structure case (16000 atoms). Phantom temperatures at each end were set 

as 290 K and 310 K. After obtaining the average temperature of about 300 K with the 

auxiliary velocity scaling control, typically 1 ns simulations were performed for the 

equilibration with only phantom temperature control. Then, 1 ~ 2 ns calculation was used for 

the measurement of temperature distribution. The convergence of the temperature distribution 

was terribly poor with this technique especially for shorter nanotubes, so we disregarded the 

data for shorter nanotubes than 12.4 nm. With energy budgets of controlling phantom 

molecules, the heat flux along the tube can be simply calculated. Combined with the 

temperature gradient such as in Figure 2, the thermal conductivity λ can be calculated through 

Fourier’s equation: )/( zTq ∂∂−= λ . As the cross-sectional area, a ring of van der Waals 

thickness 3.4 Å was used.  

The dependence of the thermal conductivity on the nanotube length is summarized in 

Figure 3. The thermal conductivity was diverging with the power-law characteristics with 

nanotube length [20] at least up to the 0.4 µm long nanotube for (5, 5). This divergence is 

most dominant for the smallest diameter nanotube (5, 5). This very striking behavior of 

thermal conductivity for (5, 5) is similar to the one-dimensional model calculations of thermal 

conductivity [21] where the divergence of λ with the power of 0.35 or 0.4 is discussed. It 

seems that the one-dimensional feature of heat conduction is really possible with the real 

material: the small diameter carbon nanotube. The thermal conductivity may converge when 



the tube length is much longer than the mean free path of energy carrying phonon. However, 

the thermal conductivity of about 600 W/mK for about 0.4 µm tube is still steadily increasing 

with the exponent of 0.27. 

The temperature dependence of measured thermal conductivity is plotted in Figure 4. 

In solid state physics textbook [12], thermal conductivity λ by the crystal vibration is 

expressed as ∑= lvcvλ , where cv, l and v are heat capacity, mean free path, and group 

velocity of phonons, respectively. Usually, it is assumed that the temperature dependence of 

the group velocity or the sound velocity is negligible. At high temperature the phonon-phonon 

scattering known as Umklapp process is the dominant factor to reduce the phonon mean free 

path, and the thermal conductivity is expected to reduce as 1/T. Calculated results in Figure 4 

approximately follow this relation, but even at very low temperature about 20 K without a 

peak. On the other hand, experimental results of MWNTs [8] or carbon fibers [22] showed the 

maximum thermal conductivity at around 300 K. At low temperature the phonon mean free 

path is expected to have almost constant value limited by the system size. On the other hand, 

the heat capacity varies as T3 at low temperatures because only long wavelength (low energy) 

phonons having TkB<ωh are excited to any appreciable extent at low temperature T. At high 

temperature, the heat capacity will approach to the constant value of 24.943 J/(mol K) 

approximately beyond the Debye temperature. Since the Debye temperature for carbon 

nanotube is expected to be as high as diamond, such as 2500 K, the quantum effect in heat 

capacity is very important even at room temperature. Since the classical molecular dynamics 

simulation cannot reproduce the quantum effect in heat capacity [23], the reported maximum 

value of thermal conductivity at 100 K [4] or around 300 K [9] are questionable. These 

coincidences are probably because the limit of the phonon mean free path due to the small 

system size. The relatively short nanotubes in Figure 4 also show the deviation from the 1/T 

relation. 



 

Phonon Density of States and Phonon Dispersion Relations 

As the first step to connect the molecular dynamics simulation to the phonon concept 

approach, phonon density of states and phonon dispersion relations were extracted from the 

simulated trajectories. The phonon density of states was measured as the power spectra of 

velocity fluctuations in Eq. (1).  

( ) )0()(exp)( ααα ∫ ω−=ω vtvtidtD  (1) 

Here, α takes r, θ, z for each velocity component in the cylindrical coordinate. The calculated 

density of states is shown in Figure 5 as the right hand side inserts of phonon dispersion 

relations. For this calculation, 8192 temporal data points saved every 5 fs were used. 

The photon dispersion relations were also directly measured as the time-space 2-D 

Fourier transforms in Eq. (2) of the displacement vector r’(z, t) from the equilibrium position 

re(z); )(),(),(' ztztz errr −= . 

∫ ω−=ω αα )exp(),('),(' tiikztzrdtkR  (2) 

Here, k is the wave vector along z-axis. Position vector r(z, t) of atoms in a line along z-

direction separated by ccaa −= 3  (see Figure 1(d)) are used. In the case of Figure 5, 128 data 

points in z direction multiplied by 8192 temporal points were used. The phonon dispersion 

relation obtained from eigen values and eigen vectors of dynamical matrix made with the 

force-constant tensor scaled from 2 D graphite [24] is shown in Figure 5(d) as the comparison. 

The phonon modes from radial displacement or radial velocity component in Figure 5(a) have 

relatively low frequency including the radial breathing mode [25]. On the other hand, the 

vibrational modes in the graphitic plane appear as about 1600 cm-1 peak in Figure 5(b) and (c). 

The unit cell of (5, 5) nanotube is made of 20 atoms (Figure 1(c)), and there are 60 vibrational 

modes. Group theory for this D5d symmetry structure shows that there are 12 non-degenerate 



and 24 doubly degenerate phonon branches [2]. Hence, there are distinguishable 36 branches 

of phonon dispersions in Figure 5(d). All of them were projected in Figure 5(a), (b) or (c).  

The group velocities of four acoustic phonons were estimated as longitudinal acoustic 

mode: 17 km/s (z-direction), transverse acoustic mode (degenerate): 7 km/s (r-direction), 

twisting acoustic mode: 10 km/s (θ-direction), in good agreement with the dynamical matrix 

result in Figure 5(d).  

 

SUMMARY 

Heat conduction of finite length single-walled carbon nanotubes (SWNTs) was 

simulated by the molecular dynamics method with the Tersoff-Brenner bond order potential. 

Without the use of periodic boundary conditions in the nanotube axis direction, thermal 

conductivity of finite length nanotube was calculated. The thermal conductivity was diverging 

with the power-law characteristics with nanotube length at least up to the 0.4 µm long 

nanotube for (5, 5). This feature can be compared with the theoretical 1 dimensional heat 

conduction calculations. The temperature dependency of measured thermal conductivity 

behaved as 1/T in high temperature range. The limitation of classical molecular dynamics in 

low temperature calculation was also discussed. As the first step for exploration the basic heat 

conduction mechanism, phonon density of states and phonon dispersion relations were 

directly extracted from the molecular dynamics trajectories.  

 

NOMENCLATURE 

a: Translation lattice vector 

ac-c: Bond length of carbon, nm 

c: velocity of light, m/s  

D(ω): Phonon density of states  



h : Planck constant, Js 

k: Wave vector, 1/nm 

kB: Boltzmann constant, J/K 

L: Length of a SWNT, nm 

q: Heat flux, W/m2 

r: Cylindrical coordinate (radial direction), nm 

R(k,ω): Phonon dispersion relations 

T: Temperature, K 

t: Time, s 

v: Velocity, m/s 

x, y, z: Cartesian coordinates (z is along tube axis), nm 

 

Greek Symbols 

λ: Thermal conductivity, W/mK 

θ: Azimuth angle 

ν: Frequency, Hz 

ν’: Wave length ν’=ν/c, cm-1 

ω: Radial frequency ω = 2πν , 1/s 
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CAPTIONS TO FIGURES 

 

Figure 1 Geometries of nanotube unit cells and the simulation system. (a) 40 atom unit cell of 

(10, 10), (b) 32 atom unit cell of (8, 8), (c) 20 atom unit cell of (5, 5), (d) Translation lattice 

vector a for (5, 5), (e) Simulation system for (5, 5) nanotube. 

 

Figure 2 Temperature distribution along a 202 nm long (5, 5) nanotube. 

 

Figure 3 Dependence of thermal conductivity on length of nanotubes for 300K. 

 

Figure 4 Temperature dependence of thermal conductivity. 

 

Figure 5 Phonon dispersion relation and photon density of states for 101 nm long (5, 5) 

SWNT. Dispersion relations from r, θ and z components of displacement are shown in (a), (b) 

and (c) respectively. The phonon density of states calculated as power spectra of vr, vθ, vz are 

shown as the right hand side of dispersion relations. (d) The dispersion relations solved from 

the dynamical matrix using the force-constant tensor scaled from those for 2D graphite [24]. 
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Figure 1 Geometries of nanotube unit cells and the simulation system. (a) 40 atom unit cell of 

(10, 10), (b) 32 atom unit cell of (8, 8), (c) 20 atom unit cell of (5, 5), (d) Translation lattice 

vector a for (5, 5), (e) Simulation system for (5, 5) nanotube. 
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Figure 2 Temperature distribution along a 202 nm long (5, 5) nanotube. 
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Figure 3 Dependence of thermal conductivity on length of nanotubes for 300K. 
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Figure 4 Temperature dependence of thermal conductivity. 
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