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ABSTRACT

In this paper we include and explain in detail a computer code used to solve the molecular dynamics
simulation of an evaporating droplet. In this code we use the Gear Predictor-Corrector numerical integrator
and a truncated Lennard-Jones potential. However, the code can be used for different applications given some
minor modifications. The scope of this paper is to give researchers a working code to study molecular

dynamics and encourage other researchers to do the same

1 INTRODUCTION

Molecular dynamics simulations could become viable as a
tool for analyzing systems on a nanoscale level. This can
primarily be attributed to the advanced design of high speed,
large memory and/or parallel computers. Molecular dynamics
formulation is deterministic and consist of simultaneously
solving Newton's equations of motion for each atom, molecule
or system of molecules to determine properties of the materials.
Molecular dynamic studies are limited to few topics with some
success. Among these the most frequent application is to
siuwulate the nanoscale phase change phenomena through an
atomic or molecular level analyses. One such application is
within the metallurgical industry, an emphasis has been placed
on the nanoscale phase change behavior of metals because of
their relevance in many diverse nanoscale processes, such as
metal powder production via nucleation from a supersaturated
vapor, chemical vapor deposition processes, and the
crystallization of various polymers. Pound (1952) observed the
nucleation of various types of vapors and approximated that the
critical nuclei consisted of only between 80 and 100 atoms.
Attention has also been focused on the need for understanding
the kinetics of nucleating vapor (Reiss, 1952 and Michaels,
1969). Statistical theory predicts a deviation in the behavior of
droplets this small from macroscopic or continuum analyses.
Hill er al (1963) confirmed this notion in his study of
nucleating metal vapors by noting that the surface tension
could be in substantial error since drops of critical size have
such small radii of curvature. Nucleation phenomena are small
in spatial extent in that the critical radii of the nuclei have been

found to be of the order 102 m (Lothe and Pound, 1969).
Furthermore, the time required for formation of critical nuclei

has been documented to be of the order 10-10 g (Mandell et al,

1976). Molecular Dynamics studies of nucleation are extended
to molecular clustérs undergoing phase changes with a new
interaction potential by Santikara and Bartell (1997), and the
crystallization of metastable fluids by Pickering and Snook
(1997). Recently, molecular dynamics simulations have been
used to investigate the molecular mechanism that governs
many heat transfer processes such as the evaporation,
condensation and melting at liquid surfaces (Chokappa and
Clancy, 1988, Rey et al 1992, Yasuoka et al, 1994, Matsumoto
et al, 1994, 1996, Kotake and Aoki, 1996, Tsuruta, Takana,
Tamashima and Masuoka, 1996.) The evaporation of droplets
studies are needed at supercritical conditions as it relates to
combustion in cryogenic rocket motors on a microscale basis as
described by Kaltz et al (1994). The subcritical evaporation of
droplet is modeled by Long et al (1997), and the computed
evaporation rate compared with the Knudsen aerosol theory. A
molecular dynamics simulation is employed by Bhansali,
Bayazitoglu and Maruyama (1998) to investigate the interfacial
phenomena and to determine properties of an evaporating
sodium droplet. The Lennard-Jones potential (Bhansali et all,
1996) and oscillatory pair potential based on Levesque et all
(1985)’s data is studied (Bhansali and Bayazitoglu, 1996). To
simulate such a problem the computational code will be
presented in the following section.

Molecular dynamics simulations consist of four major
phases: 1) the construction of an adequate potential that
governs the intermolecular forces acting between the individual
particles, 2) the initialization of the simulation and run
parameters, 3) the calculation of the molecular trajectories and
velocities of each particle during simulation, and 4) the
analysis of the trajectories and velocities ‘to determine the
physical properties of the system.

On a different note, molecular dynamics studies have not
exploded as fast as one would have originally expected. Most
of the publications related to our current phase change problem
have started to resemble each other very closely. It seems that



this is due to the fact that writing the computer code for solving
the problem is such a time consuming and daunting task that
most people consider it a milestone alone when getting their
code to run.

The computer codes, together with the capabilities of
current and future computer technology, have the potential of
solving new problems and quantifying the experiments of nano
and micro-scale size. We would like to see some more
collaboration in the form of making previously produced and
tested computer codes available to other researchers such that
they can eliminate the pain and agony of trying to write their
own code from scratch. This will give people a jump-start, so
that they can spend their time expanding the current research or
even uncover complete new areas of application. One good
example is the book “Molecular Dynamics - Simulation” by
Haile (1992). Surely many people have put his detailed
explanations of the intricacies of the problems involved in
writing a molecular dynamics code to good use.

In this paper we will present our analysis of an
evaporating droplet along with the code written to solve the
problem. We hope other researchers will take this code and use
it to their advantage. With some alterations this code can be
used to simulate processes such as conduction in thin films or
fluid flow in nano channels.

2 MOLECULAR DYNAMICS SIMULATION CODE

In simulation for the intermolecular forces the well-
known Lennard-Jones 12-6 potential, ¢ is used,

¢(fij)=4e{@/‘ii)12_ (G/rij)s] (1

where rjj is the separation distance between atoms i and j, O

the first zero of the potential is the equilibrium separation
parameter (A), and € is the potential well depth (J). This
potential was selected because of its simplicity, but it could
easily be replaced with another potential in the code as long as
it represents the physical behavior of the medium (e.g.
Bhansali and Bayazitoglu, 1996).

Although the code is initially written to “investigate
thermal characteristics of an isolated evaporating liquid droplet
at various temperatures, it can also be used for other nano-scale
problems. A microcanonical ensemble was employed in which
the number of particles, the volume, and the total energy of the
system were the constrained constants (Rowley, 1994).

The fcc structure is used for simulations in this code.
Each atom was arbitrarily assigned a velocity in each

coordinate direction (Vi*k ia a random number generator and

then scaled to the set point temperature, T; ,

* — % *
Vi " = Vik Tp/Tact @

where subscript i corresponds to a particular atom, and
subscript k represents the coordinate direction. The
instantaneous femperatures are time averaged during the
simulation until the steady state is reached. The instantaneous
temperature of the system T:ctdetermined from the

equipartition principle.

1
TR ®

act ik

where N is the number of atoms.

The velocities and the temperatures in the simulation
were normalized with respect to the standard parameters used
in typical soft-sphere models presented in Table 1 and are
denoted as such with the * superscript (Thompson er al, 1984,
Allen and Tildesley, 1987).

Table 1. Reduced Parameters

Quantity Parameter
Length x*=x/c

r*=r/o
Pressure P*= (P(S3 / z-:)
Temperature T*=(k,T/e)

kg = 1.381xexp(-23) J/K
Velocity V*=(v/Je/wm)
Timestep At*= (At/ oyfwm/e )
Density p*=Ng*/V
Potential ¢ = 2

Ne

Since no dissipative external forces exist and since the
potential was assumed pairwise additive, the force F, (N) on
each particle i could then be related to the potential in the
following manner

- %,
B 2ol @

where V denotes the gradient and wm, (kg) is the mass of the
atom, molecule or cluster. F, is the position vector (Armstrong),

and t is the time, (sec). A 5th order Gear predictor-corrector
numerical integrator algorithm was used to solve the Newton’s
equations of motion for each atom. This algorithm was found
to have better energy conservation characteristics to the other
algorithms considered previously such as the Verlet or Beeman
algorithms (Swope et all, 1982, Haile, 1994, Amini and
Fincham, 1990).

The simulation was governed by the temperature control
scheme employed in the simulation. An equilibration period
was specified at each set point temperature (T;) during which

the velocity was scaled according to equation (2).

Thermal equilibration was monitored by using a nearest
neighbor routine that tracked the number of vapor atoms with
respect to time. Each atom was classified as vapor, liquid, or
surface depending on the number of atoms that are within a
sphere of radius 1.50 centered at that particular atom. An
atom was considered vapor if it had 1-2 neighbors, interfacial if
it had 3-7 neighbors, and liquid if it had 8 or more neighbor
atoms (Maruyama et al, 1994). Thermal equilibrium had been
reached when the number of vapor atoms had become
relatively constant.

The velocity scaling was then terminated and the system
was allowed to proceed in a state of constant total energy
during which the trajectories and velocities were accumulated
for the subsequent determination of the physical properties.
The set point temperature was then reset and thermal
equilibrium was achieved at the new desired state.



For a system of N atoms, there are N(N-1)/2 possible
force interactions and the calculation of these interactions is
extremely time-consuming. To calculate the force on each
atom, for systems in which atoms are subjected to short range
forces, a Verlet neighbor list routine was implemented to
reduce the computation time (Verlet, 1967, Arnold and Mauser,
1990, Chialvo and Debenedetti, 1991).

Hence, a truncated potential was used such that the force
for separation distances greater than a critical cutoff distance,
rc, (A), equals zero, indicating that outside the critical radius
atoms have a negligible contribution to the total force on a
given atom..

FILEOPEN.f
Read input variables

Then for each atom, the routine maintains a list of neighboring
atoms that lie within a distance 1, (A) of that particular atom
where typically r, = ¢ + 0.30. The neighbor list for each
particle was automatically updated based on a maximum parti-
cle displacement criterion as reported by Verlet.

In Fig 1 we present the flow chart of the code. The
code is written in FORTRAN77 and the main and the
subroutines are individually explained.

INIT.f
Initialize Parameters
CHECK. f
Update Neighborlist
PREDICT. £ J
Predict Position, ( ~
. . SAVE. f
Vel Accel
elocity, Acceleration Save Current
\___ Configuration  }
( LOG. £ )
Pr— STEP I TORCE T Update Number of
. TEP.L . Neighboring Aty
MDS Code Start Time Stepping Update Force on Each et ormg Atms J
Particle ’ ~\
SHELL. f
Redefine Position of
\___ Inclusion Shell )

e ~

RADDIST.f

CORRECTOR. f
Correct Postion, Velocity,
Acceleration

Obtain Radial
\_Distribution Function )

PERIODIC.f )
Apply Periodic
Boundary Conditions |

( AVG.E
Average Potential and
Kinetic Energy y)
((—  OUTPUT.E
Write Output Data to
Files J)
’ TEMCON.E )
Velocity Scaling w/r
Temperatures J)
(( PROF . L \
Calculate Pressure and
Density Profiles J)
FILECLOSE. £
Close All Files

Executed only once

Executed in each time loop

Executed in each time loop
and in each averaging loop

Figure 1. Flowchart



2.1  Main Routine

CXRF R Rk A A ;AR AR E R AR KRR R R Ak kAR AR AR AR AR AR R AR kAR IR AR RAK
c
c MAIN BODY
c
CF AR RN Rk ke ko kA d kKA kKRR R R A KRR R R KR AR AR KRR AR AN KA AEA R
integer nmax,maxnab
parameter (nmax=865, maxnab=nmax*500)
integer i,iloc,inte,intlg,intp,inttc,intv,irep,j,list,
+ lnay,nloc,nmol,nrep,ntc,point,upent, rknt
integer lsti(nmax*{nmax-1)/2),lstj (nmax* (nmax-1)/2)
double precision enesum,plr,ulr,ve,velsq,vsgsum,wu
integer kavg,kprnt

¢ RDF = radial distance function
integer ngofr,nrdels
double precision gr,rdel
double precision bk,dt,dts,eps,ffc,fnb,pi,rcut,rlist,
+ rxo, ryo,rzo,sig, time, tini, tins,uls,
+ virsum,vl,vls,wm
double precision x{nmax,3),v{nmax,3),xi(nmax,3)
double precision accx,accy,accz,alpl,alpl,alp2,alp3,alp4,
+ bx,by.bz,cx,cy,.cz
logical 1lpo,lvo,update

common /one/ 1sti,lstj,v,x

common /blockl/ rxo{nmax},ryo (nmax),rzo (nmax)

common /block2/ list(maxnab},point (nmax)

common /gear/ accx(nmax),accy{nmax),accz(nmax},
bx (nmax) , by (nmax) , bz (nmax) ,

+ cx {nmax) , ¢y (nmax) , cz (nmax})

common /correct/ alp0,alpl,alp2,alp3,alpd

+

¢ RDF
common /rdf/ gr(500),rdel
common /rdf2/ nrdels,ngofr(500)

c —_
c Open data files for formatting
c
call fileopen
rknt = 0
c
c Calls for the initial condition subroutine
c
call init(bk,dt,dts,enesum,eps,ffc, fnb, inte, intlg, intp,
+ inttc, intv, kavg, kprat, lnay,nloc,nmol,nrep,ntc,
+ pi,plr,rcut,rlist,sig, time, tini,tins,ulr,uls,
+ upcnt,update, virsum, vl,vls, vsqsum, wm, xi)
c
c Start stepping in time
<] Print initial conditions
c -

write(13,'(317)') 1,nmol,nrep/intp+l
write(13,'(3F7.2) ) v1*1.0D10, time*1.0D12,dt*nloc*intp*1.0D12
de 10 i = 1,nmol
write(13, ' (3F7.2)') (x(i,j)*1.0D10*sig,j=1,3)
10 continue

e -
c TOP OF THE LOOP
e -
c N
c Update time of the simulation
c
c nrep = nubber of time steps general loop is executed = 2000
do 100 irep = 1,nrep
open{9,file='times.dat')
write{9,*) irep
close(9)
time = time+dts*nloc
[
c MOVE MOLECULES
[
c .
[ Call subroutine "step". Atoms are moved for nloc times from
c their current configurations. This is called the local loop
< nloc = 10
o
do 110 iloc = 1,nloc
call step(bk,dts,eps,ffc, fnb,iloc,irep, lnay,nloc,
+ nmol, rcut,rlist,sig,update, upcnt,ve,
+ virsum,vl,vls,wm,wu,uls,pi,xi,rknt)
110 continue
c
c Check whether logicals are true or false
c lpo = Controls position vector output
c lve = Controls velocity vector output
o _— -
1lpo = .false.
if (mod{irep, intp}.eq.0} lpo = .true.
lvo = .false.
if(mod{irep,intv).eq.0) lvo = .true.

if (mod(irep,kavg) .eq.0) then
call avg{enesum,nmol,velsq,vsgsum,v,ve,virsum,wu)
end if
if (mod{irep,kprnt).eq.0) then
call output (bk, enesum, eps, irep, kavg, 1lnay, 1po, 1vo,nloc,
+ nmol,plr,sig, time,ulr,velsq,vsqsum,
+ v,ve,virsum,vls,wm,wu,x}
end if
if {(mod{irep,inttc).eq.0) .and. (irep.le.ntc)) then
c Subroutine TEMCON corrects the velocities with temperature.

a

This allows the system to eguilibrate at a certain
c temperature.
call temcon{irep,nmol,tins,v}

end if

if {(mod{irep, inte) .eq.0}then
c PROF is called once at he end of the code.( inte=2000)

call prof(bk,eps, fnb, irep, 1po, lvo,nmol,pi, rcut,
+ sig,time,tini,tins,virsum,vl,vls,wn)
endif

c-
c BOTTOM OF THE LOOP

c
100 continue

OUTPUT FINAL CONDITION (12)

Writes the final position vectors to a file

aaoaaa0aaq
'

write(12,*) nmol,vls,uls,time

do 777 1 = 1,nmol

write{12,*) x(i,1),x(i,2),x(i,3)
777 continue

do 666 i = 1,nmol

write{12,*) v{i,1),v(i,2),v{i,3)
666 continue

Q
|

CLOSE FILES

Call to subroutine “fileclose"” and verify that the program
terminated normally

anaaoaan

call fileclose

write(*,*) '-- program finished normally --'
stop

end

2.2  Subroutine INIT

This subroutine is called by the main program once at
the beginning of the code. It initializes the variables.
Initial positions of atoms are arranged based on Face
Centered Cubic structure. 8 Atoms on the corners are
common to 8 cubes and 6 atoms at the center of the faces
are common fo 2 cubes. So, the number of atoms for a unit
cell can be calculated as follows:
(Number of atoms on the corners) x (0.125) + (number of
atoms at the faces) x (0.5)=8x (0.125) + 6 x (0.5) =4

nl

if 0O(0,0,0) = The initial coordinates of 4 atoms in a cell
will be: (0, 0, 0), (ul/2, ul/2, 0), (0, ul/2, ul/2), (ul/2 ,o0, ul/2)
For this analysis the number of unit cells in a crystal is

equal to (nuni )’ . So the number of atoms in a unit crystal
is 4.(nuni)’, where nuni = 4
So the length of a crystal = (ul) x (nuni)

then we define control volume as a cube having a length of
vl where vl = (ul) x (nvol), where nvol = 6



“* »

ul x nvol

To initialize atoms, initial distance from an atom on the
outside boundary to the periodic boundary is defined as:

base = %(vl — (nuni) x (ul)) )

After the initial positions are set, they are
nondimensionalized with respect to G.

Initial velocities
Each atom is assigned to an initial velocity having a

magnitude of 1.0

bc = random magnitude =-1.0 <bc < 1.0

a = Random angle

bs = V1 —bc
The magnitude of velocity,
V.| = /(be.sin a)® +(be.cos a)® +bs® =1.0 6)

The components of velocity are going to be expressed as
follows in the code

V, =V, i+V(@®n,2)j+Vn3)k %)

V(n,1) = bc sin(a)
V(n,2) = bc cos(a)

v(n,3)= V1 —bc?

Cancellation of the total translation
To obtain zero total linear momentum the velocities
are scaled by removing translation from the velocities.
nmol
Total translation in x, y, z -directions are Vl= ZV(i,l) s
i=1
nmol nmol
V2= V(,2) and V3= V(i3). So, Average X, y, z -
i=1 i=1

V2

nmol’ nmol’ nmol
Velocities after translation, can then be written as

translations / atom are

respectively.

VAD = VED-— | V2) = Vi) - —2,
nmol nmol
V(i3) = V(i3) ——
nmol

Cancellation of the total rotation
Position of an atom :

x(,Di +x3,2)] +x3G,3)k T @®)
Velocity of an atom :

V, =VGE,D1+V(3,2) j+ Vi) k ©)

The components of the distance of an atom from the
center of the control volume:

. vl . vl . vl
I, = x(1,1)——2— , = x(1,2)—7 , I3 =Xx(1,3) ——2- (10)

then we can write angular rotation about x, y, z axes in the
following form

nmol

01=) [xV(i3)-xv(i,2)]
i=l
nmot

02= Y [r,xV(@i,) -1xV(i,3)] (11)
i=1
nmol

03=Y [xv@,2)-nxviDn]

i=1
Average angular velocities are calculated as:

1=mmfl)l 0 02 03= 03
-2
;Iril

2=nmol.2’ nmol_.2

2 PN
i=1 i=1

Velocities after removal of rotation are

VD =V@)-(O2xr, -03x1,)

V(§,2)=V(i,2)-(03xr -0lxr,) (13)

V(,3)=V(i,3)-(Olxr, -02x1,)

O (12)

Now, the velocities should be adjusted to match the
temperature of the system.
The total kinetic energy per unit mass is given as

nmol
KEG = ) V(@i1)* +V(i,2)* + V(i3)* 14
i=1
The kinetic energy per atom (ek = KE / nmol)
can also be written in terms of temperature:
3k, T
wm
so, we can write the scaling factor as,

o= ’ﬁ i (16)
wm.ek

.. . . . . fwm
And then velocities are nondimensionalized with ,/—
€

ek = (15)

P R R R e R LR R R R L LR T S o
c

subroutine init(bk,dt,dts,enesum,eps,ffc, fnb, inte, intlg,

+- intp,inttc, intv, kavg, kprnt, lnay,nloc,nmol,nrep,ntc,

+ pi,plr,rcut,rlist,sig, time,tini,tins,ulr,uls,upcent,

+ update,virsum,vl,vls,vsgsum,wm,xi)

B R T Rt 2 L L Lk R T T S T e
implicit none
integer nmax
parameter (nmax=865)
integer i,im,inte,intlg,intp,inttc,intv,j, %k, kavg, kprnt,
+ lnay,nloc,nmol, nrdm, nrep,ntc,nuni,nvol, upcent
integer lsti (nmax* (nmax-1)/2),lst] (nmax* (nmax-1)/2)
double precision x(nmax,3),v{nmax,3),xi(nmax,3)
double precision ail,an,ang,base,bc,bk,bs,coef,dt,dts, ek,
enesum, eps, ffc, fnb,01,02,03,pi,plr,rl,z2,
r3,ra2,randf, rcut,rlist,sig, time, tini, tins,ul,
ulr,uls,vi,v2,v3,virsum,vl,vls,vrl,vr2,vr3,
vsgsum, wm

double precision accx,accy,accz,alp0,alpl,alp2,alp3,alp4,

+ bx,by,bz,cx,cy,cz
¢ RDF

P



integer ngofr,nrdels

double precision gr,rdel

logical update

common /one/ lsti,lstj,v,x

common /gear/ accx{nmax},accy(nmax},accz{nmax),

+
+

bx(nmax} , by {nmax) , bz (nmax) ,
cx {nmax} , cy (nmax) , cz (nmax)

common /correct/ alp0,alpl,alp2,alp3,alpd

c RDF

common /xdf/ gr{500},rdel
common /rdf2/ nrdels,ngofr(500)

c

< Specify the constants

c

pi = acos(-1.0)
bk = 1.381D-23
an = 6.022D23

o

c Specify the parameters of Sodium

wm = 22.99D-3/an
sig = 3.240D-10
eps = 8.27D-21

c read CONDITIONS (10)

read(10, *)
read(10,*)
read(10, *)
read (10, *)
read{10, *)
read {10, *}
read (10, *)
read(10, *)
read (10, *)
read (10, *)
read(10, *)
read (10, *)
read(10, *)
read(10, *)
read (10, *)
read{10, *}
read (10, *}
read (10, *)
read (10, *)

nuni
nvol
tini
vl

de
nrep
nloc
intp
intv
inte
inttc
intlg
ntc
nrdm
fnb
ffc
kavg
kprnt
1lnay

INITIALIZE POSITION AND VELOCITY

READ PREVIQUS RESULT (11)

read in data from file "pre.dat” to continue previous
simulation if it exists
read (11, *,end=100) nmol,vls,uls,time
do 900 i = 1,nmol
read{ll, *,end=100} x{i,1),x{i,2),x{i,3)
900 continue
do 901 i = 1,nmol
read(1ll,*,end=100) v(i,1),v(i,2),v(i,3)

neanaona

901 continue
write(*,*) 'Continuing previous calculation.’
goto 192
c
c START NEW CALCULATION
c

100 continue
nmol = 4*nuni**3
ul = vl/nvol
uls = ul/sig
vls = vl/sig

c POSITION (x}

base = 0.5*%(vl-nuni*ul}
do 110 i = 0,nuni-1
do 110 j = 0,nuni-1
do 110 k = 0,nuni-1
im = (k+j*nuni+i*nuni**2)*4
x(im+l,1) = ul*(i+1.0/4)+base
x(im+1,2) = ul*(j+1.0/4)+base
x{im+1,3} = ul*(k+1.0/4)+base
x{im+2,1} ul*{i+3.0/4) +base
*x{im+2,2} = ul*{j+1.0/4) +base
x(im+2,3) = ul*(k+3.0/4)+base
x{im+3,1) = ul*(i+1.0/4) +base
x{im+3,2) = ul*(j+3.0/4) +base
x(im+3,3) = ul*(k+3.0/4)+base
x(im+4,1) ul*(i+3.0/4) +base
x(im+4,2) = ul*(j+3.0/4)+base
x(im+4,3) = ul*(k+1.0/4)+base
110 continue

c
c Nondimensionalize positions now
e-— .
do 115 i = 1,nmol

x(i,1) = x(i,1)/sig

x{i,2) = x(i,2)/sig

x{i,3} = x(i,3)/sig

xi(i, 1) x(i,1)

xi(i,2) x(i,2}

xi(i,3) = x(i,3)
115 continue

do 116 i = 1,nmol

write(34,134) xi(i,1),xi(i,2),xi(i,3)
116 continue
134 format(£10.4,2x,£10.4,2x,£10.4)

(]

a

3}

VELOCITY (v}

do 120 i = 1,nmol

ang = randf (nrdm) *pi*2.0
bc = 1.0-2*randf (nrdm)
bs dsqre{l.0-bc*bc)
v(i,1}) = bc*sin(ang)
v(i,2) = bc*cos(ang)
v({i,3) = bs

120 continue

c -
c CANCEL THE TOTAL TRANSLATION
c
vl = 0.0
v2 = 0.0
v3 = 0.0
o 130 i = 1,nmol
vl = vlsvi{i, 1)
v2 = v2+v{i,2)
v3 = v3+v{i,3}
130 continue
vl = vi/nmol
v2 = v2/nmol

v3 = v3/nmol
do 140 i = 1,nmol
vi{i,1) = v(i,1)-vl
vi{i,2} = v(i, 2)-v2
vii,3) = v(i,3)-v3
140 continue

c-— -
c CANCEL THE TOTAL ROTATION
c — -
ai0 = 0.0
ol = 0.0
02 = 0.0
03 = 0.0
do 150 i = 1,nmol

rl = x{i,1)-0.5*v1

r2 = x{i,2)-0.5*v1

r3 = x{i,3)-0.5*v1

ra2 = rl*rl + r2*r2 + r3*r3

ai0 = ail+ra2

ol = ol+(r2*v(i,3)~-r3*v(i,2))

02 = 02+{r3*v(i,1)-rl*v(i,3})

03 = 03+(rl*v(i,2)-r2*v(i, 1))
150 continue

ol = ol/ai0
02 = o2/ail
o3 = o3/ai0

do 160 i = 1,nmol
rl = x(i, 1)-0.5*v1
r2 = x(i,2)-0.5*vl
r3 = x(i,3)-0.5*v1
vrl = 02*r3-o3*r2
vr2 = o3*rl-ol*r3
vr3 = ol*r2-o2*rl
vi{i, 1) = v{i,1)-vrl
vi{i,2} = v{i,2)-vr2
v{i, 3) = v(i,3)-vr3
160 continue

ADJUST THE TEMPERATURE

Velocities will now be nondimensional

an0aa

ek = 0.0
do 170 i = 1,nmol
ek = ek + v(i,1)**2 + v{(i,2)}**2 + v(i,3)**2
170 continue
ek = ek/nmol
coef = dsqrt(3.0*bk*tini/{wm*ek})
do 180 i = 1,nmol
v(i,1) = v{i,1}*coef*{wm/eps) **0.5
v(i,2) = v{i,2)*coef*(wm/eps) **0.5
v{i,3) = v(i,3)*coef*(wm/eps}**0.5
180 continue
write(*,*) 'Starting new calculation.’
time = 0.0
P —
¢ Initialize parameters for Gear algorithm
Cm e e
132 do 195 i = 1,nmol
accx{i} = 0.
accy (i}
accz (i)
bx(i) =
by (i)
bz (i)
ex (i)
cy (i}
cz(i) =
195 continue
alp0 = 19./120.
alpl 3./4.
alp2 1.
alp3 1./72
alp4 1./12.

oo

(]
[
ooooool

(]

200 continue
c —
< Initialize parameters for averaging properties
c-

enesum = 0.
virsum = 0.
vsgsum = 0.



a

c LIST VECTORS (lsti,lstj)
-
k=20
do 210 i = 1,nmol-1
do 210 j = i+l,nmol
k = k+1
1sti(k) = j-i
lstj(k) =
210 continue
c- ——
c Specify parameters for the
< Verlet Neighbor routine
c
update = .true.
rcut = 3.5
rlist = 3.8
c
c long-range correction factors
c ——
plr = 96.*pi*nmol/(3.*vls**3 )

+ * {0.5/(3.*rcut**3.) - 1./(9.*rcut**9.})

ulr = 8.*pi*(nmol/vlis**3.)

+ * {1./{9.*rcut**9.) - 1./(3.*rcut**3.))
¢ -
c Nondimensional variables
e

dts = dt/(sig* {(wm/eps)**0.5)
tins = bk*tini/eps
e
c Initialize and specify params
[ for rad. dist. fun.
c
rdel = 0.025
nrdels = vls/(2*rdel) - 1
do 951 i = 1,300
gr(i) = 0.
ngofr(i}) = 0
951 continue
return
end
2.3  Subroutine STEP

This subroutine is used to move molecules. It is called

by main program 10 times for each time step.

First of all we check if the neighbor list needs to be

updated. This is going to affect the number of atoms
interacting with the atom being considered. In other words,
the force domain is going to change. To check this we
calculate the displacements from the current configuration

and

then compare those values with 0.3¢ (subroutine

CHECK).

we

positions,

Then, we start Gear predictor-corrector scheme. First,
call subroutine PREDICT to predict the values of
velocities, accelerations, third and fourth

derivatives of the positions. The way the method works:

1.

2.

ok*RE

[

c
Lt

Use Taylor expansions to predict the values of desired
quantities at the next time step.

Calculate the force using predicted positions. Evaluate
the acceleration from Newton’s second low. Find the
difference between this acceleration and acceleration
from the predictor step.

Use this difference as a correction factor to correct the
positions and velocities at the next time step.

R L e N i Rt

subroutine step(bk,dts,eps,ffc,fnb,iloc,irep, lnay,nloc,
+ nmol, rcut,rlist, sig,update,upcnt, ve,
+ virsum,vl,vls,wn,wu,uls,pi,xi, rknt)

B L L L R L R T L LT L
implicit none

integer nmax,maxnab

parameter (nmax=865,maxnab=nmax*500)

integer i,iloc,irep,ixs,j,list,lnay,nloc,nmol,nxs,

+ point,upcnt, rknt

integer lsti(nmax*(nmax-1)/2),1lstj{nmax* (nmax-1)}/2)

double precision fm{nmax,3),x(nmax,3),v(nmax,3),xi (nmax,3)
double precision bk,dts,dtsq,dt2,ek,eps, ffc, fnb, rcut,rlist,
+ rxo,ryo,rzo,scl,sig,ve,virsum,vl,vli,vls,

+ wm,wu, xsl,xs2,xs3,
+ uls,pi

integer ngofr,nrdels
double precision gr,rdel
logical update

common /one/ lsti,lstj,v,x
common /blockl/ rxo({nmax),ryo (nmax), rzo (nmax)
common /block2/ list(maxmab),point (nmax)
c RDF
common /rdf/ gr(500},rdel
common /rdf2/ nrdels,ngofr (500}
vli = 1.0/vls
dtsqg = dts*dts/2.

de2 = des/2.
e o
c Make call to check if the Verlet
c neighbor listneeds updating
c
call check{iloc,irep,nmol, rcut,rlist,update,x,upcnt)
Qo mmmm e e
c Predictor values for GPC
c .
call predict{dts,nmol,v,x)
c Now, we have the predicted value of the position of each
c atom that will be used in the force calculations.
- —
c call force to update force on each particle
Cm mmmm e
call force(fm, fnb, iloc, irep, lnay,nloc,nmol, rcut, rlist,sig,
+ ve,vl,vls,wu,update, x)
o-
c Corrector values for GPC

c After force calculation positions,velocities and higher
¢ order derivatives of the positioms should be corrected.
c CORRECTOR is used.
call corrector{dts,fm,nmol,v,vls,x,iloc,irep)
c A face centering parameter, ffc, is used that defines a box
¢  within the control box
c which is used to encompass only the liquid drop. This is done
so that the new
c center of mass is fixed, based solely on the liquid droplet.
xs1=0.0
xs2=0.0
xs3=0.0
nxs=0
scl=ffc*vls*0.5
do 240 i=1,nmol
ixs= idint(dsign(0.5D0, scl-dabs (x{i,1)-0.5*vls))+0.51)
+ *idint {dsign(0.5D0, scl-dabs{x{i,2)}-0.5*%v1s))+0.51
+ *idint (dsign(0.5D0, scl-dabs (x{i,3)-0.5*v1ls))+0.51
c The lines provide a running total of what atoms fall inside
c the ffc box at each time step. This helps to define the
c center of mass of the droplet.
xsl=xsl+x{i, 1) *ixs
xs2=xs2+x(i,2} *ixs
x83=xs3+x(1i,3) *ixs
NXS=NXs+ixs
240 continue
ek = 0.0
do 290 i = 1,nmol
do 290 § = 1,3
ek = ek+v(i,j)*v(i,])
290 continue

FIX THE TOTAL CENTER OF MASS (x)

Locate the distance in each coordinate, x, y, z that the
drop is off center with respect to the center of the control
volume.

xsl = xsl/nxs - 0.5*vis

xs2 = xs2/nxs - 0.5*vls

xs3 = xs3/nxs - 0.5*vls
So, the repositioning of each atom is completed based on the
c off center distance.

do 300 i = 1,nmol

x(i,1) = x(i,1) - xs1

nanaaaq

o

x(i,2} x(i,2) - xs2
x(i,3) = x(i,3) - xs3
if ((x(i,1).1t.0).or.(x(i,2}.1t.0).0or.(x(i,3).1t.0)}) then
call periodic(x{i,1),x(i,2),x(i,3),vls)
end if
300 continue
return
end

2.4  Subroutine CHECK

This subroutine is used to check the updating
conditions of the Verlet neighbor list. It is called by the
subroutine, STEP.

To run the code more efficiently a truncated potential
is used. Because, LJ (12,6) potential gets very close to zero
after r = 2.5 ©. In this study cutoff distance was selected as
3.5 0. And for each atom i, the method maintains a list of



neighboring atoms that lie within a distance 1; of i; so the
list identifies those atoms that contribute to the force on
atom i. The same neighbor list used over several
consecutive time steps, and it is updated every 10 time
steps. The list distance is slightly larger than 1, so that j

atoms can cross I, and siill be properly considered in
evaluating the force on I. For our purposes,

r,=350 and r, =r,+0.30=3.80 amn

P R e e
c
subroutine check(iloc,irep,nmol,rcut,rlist,update,x,upcnt}

c decides whether the Verlet list needs to be reconstructed.
c this subroutine is called to set update before every call
3 to force.
implicit none
integer nmax
parameter (nmax=865})
integer i,iloc,irep,nmol,upcnt
double precision dispmx,rcut,rlist,rxo,ryo,rzo
double precision x(mmax,3)
common /blockl/ rxo{nmax),ryo(nmax},rzo (nmax}
logical update
dispmx = 0.0
do 30 i = 1,nmol
dispmx = dmaxl(dabs(x{i,1) - rxo(i)),dispmx)
dispmx = dmaxl(dabs(x(i,2} - ryo{i)), dispmx)
dispmx = @maxl(dabs(x(i,3} - rzo(i)),dispmx}
30 continue
dispx = 2.0 *dsqgrt(3.0*dispmx**2.)
update = (dispmx.gt.(rlist - rcut))
c rlist - rcut = 0.30
if (update) then
upcnt=upcnt+1l
write(24,*) irep,iloc,upcnt
end if
return
end
2.5  Subroutine PREDICT

This subroutine is the first step of Gear Algorithm.
Positions, velocities, accelerations and higher order
derivatives of the positions are predicted for the next step. It
is called in the subroutine STEP.

Cx R R A AR KA KR A A KRR KA A AR A AR KA AR R AR KA A KR R XA AR KRR A AR R K AR A AT XK

[
subroutine predict(dts,nmol,v,x)

c calculate predicted values prior to force evaluation.

implicit none

integer nmax

parameter (nmax=865)

integer i,nmol

double precision dts,v{nmax,3),x{nmax,3)

double precision accx,accy,accz,bx,by,bz,cx,cy,cz,

double precision cl,c¢2,c3,c4

common /gear/ accx{nmax},accy(nmax),accz(nmax},
bx{nmax) , by (nmax) , bz (nmax) ,

+

+ cx (nmax) , cy (nmax) , cz (nmax)
cl = dts

c2 = cl*dts/2.

c3 = c2*des/3.

c4 = c3*dts/4.

c Predicted values are obtained by expanding Taylor series.
do 100 i = 1,nmol
x(i,1)= x{i,1}+el*v(i,1}+c2*acex(i} + c3*bx(i) + cd*cx(i)
%x{i,2)= x(i,2)+cl*v(i,2)+c2*accy (i} + ¢3*by(i) + céd*cy(i)
x{i,3)= x(i,3)+cl*v(i,3)+c2*accz{i) + c3*bz(i} + cd*cz{i}

vi{i,1) = v{i,1) + cl*accx{i) + c2*bx(i} + c3*cx(i)
vii,2} = v{i,2) + cl*accy(i) + c2*by(i) + c3*cy(i)
v(i,3) = v(i,3) + cl*accz(i) + c2*bz(i) + c3*cz(i)
accx(i) = accx(i} + cl*bx{i} + c2*cx(i)
accy(i) = acecy(i) + cl*by{i} + c2*cy(i}
accz(i} = accz{i) + cl*bz(i) + c2*cz (i)

bx{i) = bx{i) + cl*cx(i}

by(i) = by(i) + cl*cy(i}
bz(i) = bz(i) + cl*cz{i)
100 continue
return
end
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2.6 Subroutine FORCE

This is the intermediate step of the Gear Algorithm.
FORCE calculates the intermolecular force on each atom.
We assume that the interaction energy among N atoms is a
sum of isolated two body contributions, which is also called
pairwise additivity. FORCE is called in the subroutine
STEP. The positions are determined in subroutine
PREDICT. To calculate the forces, one should find the
distances between two atoms. rl, 12, r3 are the X, y, z
distances between two atoms respectively.

(6 )y = V11* +12% +13?

(18)
To calculate the intermolecular forces we use Lennard-
Jones (12,6) potential, which is given by the expression
below.

12 3
oy =dgl| —— | —| = (19)
I‘ahsij rabsij
then the force that atom i exerts on j is =
6 6
dd,.
dﬂjijz_&_—_z;%. A S | 1| & (20)
dl' rabs rabs rabs
X, ¥, z components of the force i exerts on j are
respectively:
.. | . . 12
dfm(, j1) = dflj; —— ., dfm(, j;2) = dfljy;——,
(rahs ij (rabs)ij
. . 13
dfm(, j,3) = dflj; —— (21)
(rabs )ij
Calculate the total force on each particle:
nmol nmol
fm(j1) = Y dfm(, j1), fm(j;2)= Y, dfm(,}2),
i=l i=1
nmol
fm(j,3) = Y dfm(, j3) (22)
i=1
The total force on atom j is then
V(1% +fm(j,2)* + fn(j3)? 23)

L e L ]

subroutine force(fm, fnb,iloc,irep, lnay,nloc,nmol, rcut,rlist
+
P L Ll e L
¢ subroutine FORCE is called to calculate the force on each
c molecule
implicit none
integer nmax,maxnab
parameter (nmax=865, maxnab=nmax*500)
integer i,iloc,irep.j,jbeg,jend, jnab,list,lnay,nlist,nloc,
+ nmol,point,nij {nmax* {nmax-1}/2),nnb (nmax)
double precision fm{nmax,3),x{nmax,3}
double precision fij,fnb, fxi, fxij, fyi,fyij, fzi, fzij,rcut,
+ rlist,rxi,rxij, rxo,ryi,ryij,ryo,rzi,rzij,
+ rzo,sig, sr2,sr6,ve,vij,vl,vli, wij,wu
double precision vls,rabi,rabs
¢ RDF
integer ngofr,nrdels
double precision gr,rdel
common /blockl/ rxo{nmax),ryo(nmax),rzo{nmax)
common /block2/ list{maxnab),point {nmax)
common /rdf/ gr(500),rdel
common /rdf2/ nrdels,ngofr (500}
logical update
vli = 1./vls
c zero the forces
do 10 i =
fm(i,1) = 0.
fm(i,2) = 0.
fm({i, 3) =
10 continue
c Zero the virial, force, and neighbors
do 50 i = 1,nmol
nnb{i) = 0

=3



50 continue
ve = 0.
wu = 0.
¢ first of all we look at the result of subroutine CHECK. If the
c neighbor 1list needs to
¢ be updated we save the current configuration and reconstruct
c the neighbor list. to save the current configuration,
c subroutine SAVE is called
if {update) then
call save{fm,nmol,x)
nlist = 0
do 100 i = 1,nmol-1
point(i) = nlist + 1
rxi = x{i,1}
ryi x{i,2)
rzi = x{i,3)
= fm{i,1)
fm{i,2)
fm(i,3)

i+1l,nmol
rxi - x(j,1)
ryi - x{3,2)
rzi - x(3,3)
rxij - dnint(rxij*vli)*vls
ryi) - dnint(ryij*vli)*vls
rzij - dnint(rzij*vli)*vis
rabs = dsqgrt(rxij*rxij + ryij*ryij + rzij*rzij)
rabi = 1l/rabs
if {rabs.lt.rlist) then
nlist = nlist + 1
list{nlist) = j
c then we update neighbor list by calling subroutines LOG, SHELL,
c RADDIST.
if{{mod{irep, lnay) .eq.0) .and. (mod{iloc,nloc) .eq.0)) then
call log(fnb,nij,nlist,rxij,ryij,rzij)
call shell{rxij,ryij,rzij)
call raddist{irep, lnay,nmol,sig,vl)
end if
if (nlist.eq.maxnab) stop 'list too small'
if (rabs.lt.rcut) then
sr2 = rabi**2
sré = sr2*sr2*sr2
c Nondimensional potential
vij = 4*sr6*{srb6 - 1.)
¢ Nondimensional force
wij = 48*sré*(sr6 - 0.5)
ve = ve + vij
wu = wu + wij
fij = wij*rabi**2
£xij = rxij*f£ij
fyij = ryij*fij
£zij = rzij*fij
fxi = £xi + fxij
fyi = fyi + fyij
fzi = fzi + fzij
fm(j, 1} = fm(3,1) - £xij

fm(j,2) = fm(3,2) - fyij
fm(3,3) = fm(j,3) - fzij
end if
end if
99 continue

fm{i,1) = fxi
fm{i,2) = fyi
fm{i,3) = fzi
100 continue
point (nmol) = nlist + 1
else
If neighbor list does not need to be updated, we don’'t SAVE
3 the current configuration. (But again We use predicted
c positions) Then the same force calculations are done.
nlist = 0
do 200 i = 1,nmol-1
jbeg = point (i)
jend = point(i+1) - 1
c check that atom i has neighbors
if (jbeg.le.jend) then
rxi = x(i,1)
ryi x{i,2)
rzi = x{i,3)
£xi = fm(i,1)
fvi = fm{i,2)
fzi = fm{i,3)
do 199 jnab = jbeg,jend
j = list{jnab)
nlist = nlist + 1

a

rxij = rxi - x(j.,1)
ryii = - x(3,2)
rzij - x(3.3)

rxij ) - dnint(rxij*vli)*vls
ryij - dnint (ryij*vli)*vls
rzij = rzij - dnint(rzij*vlii)*vls
rabs = dsagrt{rxij*rxij + ryij*ryij + rzij*rzij)
rabi = 1l/rabs
if((mod{irep,lnay).eq.0) .and. (mod{iloc,nloc) .eq.0))then
call log(fnb,nij,nlist,rxij,ryij,rzij)
call shell(rxij,rvij,rzij)
call raddist(irep,lnay,nmol,sig,vl}
end if
if(rabs.lt.rcut} then
sr2 = rabi**2
Sré = sr2*sr2*sr2
vij 4*sr6*{sr6 ~ 1.)
wij = 4B¥*sré6*{sr6 -0.5)
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ve = ve + vij
wu = wu + wij
] = wij*rabi**2
rxij*fij
ryij*fij
j = rzij*fij
fxi + fxij
= fyi + fyij
= fzi + fzij
fm{j,1) = fm{j, 1} ~ fxij
fm(j.2) = fm{j.2) - fyij
fm(3.3) = fm(3.3) - fzij
end if
199 continue
fm(i, 1) = fxi
fm{i,2) = fyi
fm(i,3) = fzi

end if
200 continue
end if
wu = wa/3.
nlist = 0
c Calculate number of neighboring particles
c
if ((mod{irep, lnay) .eq.9) .and. (mod(iloc,nloc).eq.0)) then
do 987 i = 1,nmol-1
do 988 jnab = point(i),point{i+l)-1
nlist = nlist + 1
j = list(jnab)
nnb(i} = nnb(i) + nij(nlist)
nnb(j} = nnb{j} + nij(nlist)
988 continue
987 continue
do 986 i = 1,nmol
write(99,178) mnb(i)
986 continue
end if
178 format(i5)
return
end

27  Subroutine SAVE

Saves the current configuration for future checking. It
is called in subroutine FORCE.

R L R T I I T T
c
subroutine save(fm,nmol,x)
c
R R R R LR Lt d Ll T
implicit none
integer nmax
parameter {(nmax=865)
integer i,nmol
double precision rxo,ryo,rzo
double precision fm{nmax,3),x(nmax,3)
common /blockl/rxo (nmax),ryo(nmax), rzo (nmax)
do 100 i = 1,nmol

x(i,1)
x(i,2)
x(i,3)
100 continue
return
end

2.8 Subroutine LOG

LOG is called by FORCE to update the number of
atoms in the neighbor list.
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c
subroutine log(fnb,nij,nlist, rxdum, rydum, rzdum)
c
R L R R R R AR L Ty LT T T,
implicit none
integer nmax
parameter (nmax=865)
integer nlist,nij(nmax* (nmax-1)/2)
double precision fnb,rij,rxdum,rydum, rzdum

rij = (rxdum*rxdum + rydum*rydum + rzdum*rzdum)**0.5
nij{nlist) = idint(dsign(1.0D0,fnb-rij}+1.1)/2

return
end

2.9  Subroutine SHELL

R R L Rt LR L L Ll L L L T,
<
subroutine shell(rxij,ryij,rzij)
c
R T L L L R LR L Tt L DT

implicit none



integer nrdels,nshell,ngofr
double precision gr,rdel,rij,rxij,ryij,rzij

common /rdf/ gr(500),rdel
common /rdf2/ nrdels,ngofr (500}

rij = (rxij*rxij + ryij*ryij + rzij*rzij)}**0.5
nshell = rij/rdel + 0.5
ngofr{nshell) = ngofr{nshell) + 1

return
end

2.10 Subroutine CORRECTOR

After intermolecular forces are calculated, subroutine
CORRECTOR is called to correct positions, velocities and
higher order derivatives of the positions. These values are
then used to update the configuration of molecules.

L L e L L L]

c
subroutine corrector(dts, fm,nmol,v,vls,x,iloc,irep)
[
Ak b kA KR d kR K R A A A E AR AR R R AR AR KRR A KA R A AR ARER AR AR
c calculate corrected values after force evaluation.
implicit none
integer nmax
parameter {nmax=865)
integer i,nmol,iloc,irep
double precision dts,v{nmax,3)},x(nmax,3)
double precision accx,accy,accz,alp0,alpl,alp2,alp3,alpd,
+ axi,ayi,azi,bx,by,bz,cl,c2,c3,cd,corrx,
+ COrry,corrz,cx,cy,cz,ch, ce,cex, cv,vls,
+ vsl,vs2,vs3
double precision fm(nmax,3)
common /gear/ accx(nmax},accy{nmax),accz(nmax),
+ bx (nmax) , by {(nmax) , bz (nmax} ,
+ cx{nmax) , cy (nmax) , ¢z (nmax)
common /correct/ alp0,alpl,alp2,alp3,alpd
c Coefficients of corrector step
cl = dts
c2 = cl*dts/2.
c3 = c2*dts/3.
c4 = c3*dts/4.
cex = alp0*c2
cv = alpl*c2/cl
cb = alp3*c2/c3
cc = alpd*c2/c4
do 200 i = 1,nmol
c Accelerations calculated from Newton’ s second low.

axi = fm(i, 1)
ayi = fm(i,2)
azi = fm(i,3)
c Corrector factor for Gear predictor - corrector algorithm.

corrx = axi - accx({i)
corry = ayi - accy{i)
corrz = azi - accz(i)

c Corrected values for positions.
x(i,1) = x(i,1) + cex*corrx
x(1,2) = x{i,2) + cex*corry
x(i,3) = x«(i,3) + cex*corrz

¢ Corrected values for velocities.
vi(i,1) = v(i,1) + cv*corrx
v(i,2) = v{i,2) + cv*corry
vi(i,3} = v{(i,3}) + cv*corrz

c Total translation.
vsl=vsli+v{i,1)
vs2=vs2+v{i,2)
vs3=vs3+v{i,3)

accex(i) = axi
accy(i} = ayi
accz({i) = azi

c Corrected values for the third derivatives of the positions.
bx(i) = bx(i} + cb*corrx
by({i) = by(i) + cb*corry
bz (i) = bz(i) + cb*corrz
c Corrected values for the fourth derivatives of the positions.
cx(i} = cx{i} + cc*corrx
cy(i) = cy{i) + cc*corry
cz(i) = cz(i) + cc*corrz
call periodicix{i,1),x{i,2),x(1i,3),vls)
200 continue
c Total translation is gradually removed
do 280 .i = 1,nmol
v(i,1)=v(i,1)-vsl/nmol*0.01
v(i,2)=v{i,2)-vs2/nmol*0.01
v(i,3)=v(i,3)-vs3/nmol*0.01
280 continue
return
end

2.11 Subroutine PERIODIC
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This subroutine applies periodic boundary conditions.
It is called by both subroutines STEP and CORRECTOR.
Periodic boundary conditions are applied under the
following conditions:

1. Ifx(i,j)<0 then  x(i,j)=x(i,j) + vl
2. Ifx@j)>vl then  x(i,j) = x(i,j) - vl
AR At E kAR AR AR R4 ARk hR &R AR R E 8 kAR £ K AR 3R R R

<
subroutine periodic(x,y,z,vls)

<]

R LRt T N S L L L L T L L T T LI T
c Apply pbc to particle in cubic box with the origin

c of the coordinate system being at (0,0,0). The length

c of the boundary is “vls" in dimensionaless units.

implicit none

double precision vls,X,y,z

if{x.1t.0.0} then
x = x + vis

elseif (x.gt.vls)
X = x - vls

end if

if{y.1t.0.0) then
y =y + vls

elseif (y.gt.vls)
y =y - vls

end if

if(z.1£.0.0) then
z =z + vls

elseif (z.gt.vls)
z =2z - vls

end if

return

end

then

2.12 Subroutine AVG

AVG is used to calculate average potential and kinetic
energy. It called in the main program after local loop is
completed.

c
subroutine avg(enesum,nmol,velsq,vsgsum,v,ve,virsum, wu)

c

R L R T LT T Ty T R T T ¥ T T % T S arpuru
c Average potential and kinetic energy are calculated by

< subroutine AVG

implicit none
integer nmax
parameter (nmax=865}
integer i,nmol .
double precision enesum,ve,velsq,vsgsum,virsum,wu
double precision v{nmax,3)
velsg = 0.
do 109 i = 1,nmol
velsqg = velsqg + v{i,1)**2.
109 continue
enesum = enesum + ve

+ v(1,2)**2. + v(i,3)**2.

virsum = virsum + wu
vsqgsum = vsgsum + velsq
return

end

2.13 Subroutine OUTPUT

Positions, velocities, energies and average properties
are output by this subroutine. It is called in the main
program.

P S R R Rt I I eI

c
subroutine output (bk,enesum,eps, irep, kavg, lnay, lpo, Llvo,
+ nloc,nmol,plr, sig, time, ulr, velsq,
+ vsgsum, v, ve,virsum,vls,wm,wu, x)
c

CF* ARk kR F AR KR AR AR AR AR AR kR AR R AR R AR R KRR R Ak kkhhh kX d ok kK
implicit none
integer nmax
parameter (nmax=865)
integer i,irep,Jj,kavg,nloc,nmol, lnay
integer nrdels,ngofr
double precision v(nmax,3),x(nmax,3)
double precision bk,denom, ek, ekavg, enesum, epot, epavg, eps,

+ etot,plr,preavg,press, sig, tmp, time,
+ tmpavg,ulr, ve,velsq, virsum, vsgsum,
+ vls,wm,wu

double precision gr,rdel,radius
logical lpo,lvo



common /rdf/ gr{500},rdel
common /rdf2/ nrdels,ngofr {500}

¢ instantaneous properties
ek = 0.5*velsq
epot = ve/nmol + ulr
etot = ek + epot
tmp = 2.*ek/(3.*nmol)

press {(wu + tmp*nmol) /vls**3 - plr*nmol*(1l./vls)**3.
c average properties
denom = dfloat {irep/kavg)

ekavg = 0.5*vsgsum/denom
epavg = enesum/(denom*nmol) + ulr
tmpavg = 2.*ekavg/ (3. *nmol)
preavg = {(virsum/denom + tmpavg*nmol) /vis**3,
+ - plr*nmol*(1/vls)**3.
c
c OUTPUT POSITION (x) (13}
[
if (1po)then
do 510 i = 1,nmol
write(13, ' (3F8.3) ') (x{i,3)*sig*1.0D10,3j=1,3)
510 continue
endif
c
c QUTPUT VELOCITY (v) (14)
<
if (1vo) then
do 550 i = 1,nmol
write(27, ' (3F10.3) ') ({v(i,j)/(wm/eps}**0.5,3j=1,3)
550 continue
endif
c
c OUTPUT INSTANTANEOUS PROPERTIES (16}
c
write{16,'(F8.3,2x,F8.3,2x,£10.3,2x,£10.3,2x,£12.7) ')
+ time*sig* (wm/eps) **0.5%1.0D12,
+ tmp, ek,
+ epot,press
c
c OUTPUT INSTANTANEOUS PROPERTIES (30}
c
write(30,'(F8.3,2x,F8.3,2x,£10.3,2x,£10.3,2x,£12.7}"*)
+ time*sig* (wm/eps) **0.5*1.0D12,
+ tmpavy, ekavy,
+ epavg,preavg

if (mod(irep,lnay).eq.0} then
do 800 j = 1,nrdels
radius = rdel*dfloat(j}
write(88,133) radius,gr(j)
800 continue
end if
133 format{£8.3,2x,£8.3)
return
end

2.14 Subroutine TEMCON

Subroutine TEMCON corrects the velocities with
temperature. It is called by the main program.

.. N v
V@ )D=VGj), | 29
Tmp
where
T, 2% 25

€
This allows the system to equilibrate at the initial
femperature.

O R R R A AR R AR R AR RN AR Rk Rk k ok kA ok h kKRR A AR AR AR AR AR A AR R AR KR AR RIRR
c
subroutine temcon{irep,nmol,tins,v)
B T L L T L L R T e s S T
implicit none
integer nmax
parameter (nmax=865)
integer i,irep,j,nmol
double precision ek,st,tins,tmp,v(nmax, 3}
open {33,file='tempcon.dat'}
write (33,*) irep
CLOSE (33)
ek = 0.
do 110 i = 1,nmol
ek = ek+v(i, D) *v(i, 1) + v(i,2)*v(i,2) + v{i,3)*v(i,3)
110 continue
tmp = ek/(3.*nmol)
st = dsqrt{tins/tmp)

do 120 i = 1,nmol
do 120 j = 1,3
v(i,j) = vi{i,j)*st
120 continue
return
end
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2.15 Subroutine PROF

Pressure and density profiles are calculated in this
routine. It is called in the main program.

A AR XA IR EEA KRR AE AR IR KKK KA KR RE AR ERAK KRR A RA AR AR
c
subroutine prof(bk,eps, fnb, irep, 1po, lvo,nmol, pi,rcut,
+ sig, time, tini,tins,virsum,vl,vls, wm)

P R R T Rt 2t R e R A T T
implicit none
integer nmax,ndr
parameter (nmax=865,ndr=110}
integer i,ij,im,irep,3j,jm,k,kk,nmol, nrl
integer lsti{nmax* (nmax-1}/2},1lstj(nmax* (nmax-1)/2),
+ nr (ndr)
double precision epm(nmax), fij (nmax* (nmax-1)/2).
epij (nmax* (nmax-1)/2) , £sij (nmax* (nmax-1)/2) ,
fs(omax), pr(ndr},prb(ndr),
ri{nmax* (nmax-1)/2),rj (nmax* (nmax-1) /2) ,
rijqg(nmax* (nmax-1}/2),v(mmax;, 3) , x (nmax, 3)
double precision bk,drp,dv,ep,epml,eps, fnb,
pi,prl,rl, r2,r3,rabs, rcut,ril, ri2,ri3, rij,
riq,rjl,rj2,r3j3,riq, rk,rkl,rk2,rp0, sbré,
sig,sk,sl,svl,sv2, time, tini,v0,
vl,v2,vd,vd2,vi,vl,vli, wm
double precision tins,virsum,vls
common /one/ lsti,lstj,v,x
logical 1po,lvo
do 912 kk = 1,nmol
if (x(kk,1).1lt.0.or.x(kk,2).1lc.0.0r.x(kk,3).1t.0.) then
print *, irep, *hold it right here®

ok

4o+

end if
912 continue
vli = 1/vls
rp0 = 3.5D-10/sig
drp = .1
c
c POTENTIAL ENERGY AND PRESSURE
c
ep = 0.0
vi = 0.0
do 150 i = 1,nmol
fs{i) = 0.0

150 continue
do 160 i = 1,ndr
pr(i) = 0.0
prb{i) = 0.0
nr{i) = 0
160 continue
do 210 ij = 1, {(nmol-1)*nmol/2
im = lsti(ij)
jm = 1lstj{ij)

c
c i-j DISTANCE
c -
ril = x{im,1) - vls*0.5
ri2 = x(im,2) - vls*0.5
ri3 = x(im,3) - vls*0.5
rjl = x(jm,1) - vls*0.5
rj2 = x(jm,2) - vls*0.5
rj3 = x(jm,3) - vis*0.5
rig = ril*ril + ri2*ri2 + . ri3*ri3
ri(ij) = dsqrt(riq)
rig = rjl*rjl + rj2*rj2 + rj3*rj3
rj{ij) = dsgrt{rjq)
rl = x(im,1) - x(jm,1)
r2 = x(im,2) - x(jm,2)
r3 = x(im,3) - x(jm,3)
rijg(ij) = rl*rl + r2*r2 + r3*r3
rij = dsart({rijqg(ij))
rl = rl - dnint(rl*vli)*vls
r2 = r2 - dnint{r2*vli)*vls
r3 = r3 - dnint(r3*vli)*vls
rabs = dsqrtlrl*rl + r2*r2 + r3*c3)
c
c L-J POTENTIAL AND FORCE*rij
c

sbré = (1/rabs)**6
sl = dsign(0.5D0,v1ls*0.5-rabs}+0.5
epij{ij) = 4*(sbré - 1.0)*sbré
ep = ep + epij(ij}*sl
sbré = (1/rij}**6
sl = dsign{0.5D0,v1s*0.5-xrij)+0.5
£ij(ij) = 48*(sbr6-0.5)*sbré*sl
£sij(ij) = dabs(fij(ij)/rij)

210 continue

[*]

< PRESSURE

do 220 k = 1,ndr
rk = rp0 + drp*(k*1.0-0.5)
do 230 ij = 1, {(nmol - 1)*nmol/2
rig = ri(ij)*ri(ij)
rjg = rjlij)*rilij)
v0 = {(rig - riq)/rijg(ij}
vd2 = dmax1(0.0D0,v0*v0+1.0-2* (rig+rjg-2*rk*rk} /rijq{ij))

vd = dsqgrt(vdz}
vl = v - vd
v2 = vl + vd



svl = dsign(0.5D0,1.0 - dabs(vl)) + 0.5
sv2 = dsign{0.5D0,1.0 - dabs(v2)) + 0.5
prl = 0.5*fij{ij) *vd*(svl + sv2)
prik} = pr(k)+(dsign(0.5D0,-prl}+0.5) *prl
prb(k) = prbi(k) + (dsign(0.5D0, prl}+0.5)*prl
230 continue
220 continue
c
c DENSITY PROFILE
c

do 250 i = 1,nmol
rl = x{i,1) - v1s*0.5
r2 = x{i,2) - v1ls*0.5
r3 = x(i,3) - v1s*0.5
rabs = dsqrt(rl*rl + r2*r2 + r3*r3)
k = idint((rabs-rp0)/drp) + 1
nrl=(dsign(1D0,rabs-rp0)+1) * (dsign (1D0, rp0+ndr*drp-rabs) +1) /4
k = max{k, 1)
k = min(k,ndr)
nr(k) = nr(k) + nrl
250 continue
do 260 i = 1,nmol-1
do 260 j = i+l,nmol
k = j-i-1
ij = i+k*nmol - (1+k)*k/2b
fs(i) = £s{i) + fsij(ij)
fs(j) = £s{j) + £sij(ij)
260 continue

a

c OUTPUT PRESSURE AND NEAREST NEIGHBOR RESULTS

do 310 k = 1,ndr
rk = {rpO+drp*{k*1.0-0.5)) *sig
sk = 4*pi*rk*rk

rkl = {(rpO+drp*(k-1}) *sig

rk2 = rkl + drp*sig

dv = 4*pi* (rk2**3-rk1**3)/3

write(15,'(3D12.3,2x,£10.3)}') rk,pr(k)*eps/(sk*rk),
+ prb{k)*eps/(sk*rk),
+ nr {(k} *wm/dv
310 continue
Je
c OUTPUT INDIVIDUAL PE and KE/atom
c . —
do 520 ij = 1, (nmol-1)*nmol/2
im = lsti{ij)
jm = 1stj{ij)
epml < epij(ij)*0.5
epm{im) = epm(im) + epml
epm(jm) = epm(jm} + epml
520 continue
return
end

3 DATA REDUCTION

Once thermal equilibrium had been reached at a desired
temperature, the density profile throughout the drop could be
calculated by determining the number of atoms, N(r), i

differential spherical shells of equal width, Ar 010,
through the following equation
p(r) = (N D/ v(r) (26)

where ( ) denotes an ensemble average taken over the

duration of the simulation for which thermal equilibrium exists.
The shell volume v(r), (A’) is simply represented by:

v =25 (32 +ar?/)

@mn

where r denotes the midpoint of the shell as measured from the
center of the drop. The center of the drop coincided with the
center of the simulation box because the center of mass of the
drop was recalculated at each time step to compensate for any
bulk motion of the drop. A regression analysis was then
performed (Thompson et al , 1984) to fit the density data with
the commonly used hyperbolic tangent function such that
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p(r)——(pt+p )’ (pl -P )‘a“h[Z(r o )]

(28)

where p,, (kg/m’) and p,,, (kg/m’) are the local liquid density
at the center of the drop and the local vapor density at the
boundary of the container, respectively and ro (A) is a

coefficient designating estimate of the drop radius. The
parameter dg is a measure of the thickness of the surface layer

about the equimolar plane at r= rg.

4 NOMENCLATURE

accx,accy,accz = acceleration of atom (second derivative)
aio = sum of all the rotational displacements squared

alam = parameter for subroutine "lambda®”

alp0,alpl,alp2,alp3,alp4 = constants of the gear-predictor
algorithm

an = Avogadro's number (6.022e23 1/mole)

ang = random angle (similar to longitude of the earth)

axi,ayi,azi = forces on the particle (used in “corrector"
subroutine)

base = initial distance from the particles on the
outside of the crystal strucure to the periodic
boundary

bc = random magnitude

bk = Stefan Boltzman constant (1.381e-23 J/K)

bs = sqrt({l-bc~2)

bx,by,bz = third derivative of atom position

cl,c2,c3,cd4 = dimensionless time parameters

coef = scaling coefficient

corrc, corry,corrz = difference between predicted
acceleration and and that glven by the evaluated
force in “force"

cossum = parameter for subroutine *lambda"

cx,cy,cz = fourth derivative of atom position

cb = correction parameters in "corrector" subroutine
{alpha2)

cc = correction parameters in "corrector® subroutine
{alpha3)

cex = correction parameters in "corrector*® subroutine
{alpha0)

cv = correction parameters in "corrector" subroutine
(alphal)

denom = averaging parameter

densty = density

dispmx = displacement used to determine whether neighbor
needs to be updated

darp = size of the radial grid

dc = time step {sec)

datc2 = half of the dimensionless time step

dts = dimensionless time step

dtsq = 0.5*(dts"2)

av = volume of the region ("prof")

ek = average kinetic energy per atom per unit mass

ekavg = average kinetic energy

enesum = average potential energy

ep = average potential energy per atom per unit mass

epavg = average potential energy

epij = potential energy contribution from interaction
pair 1,3

epot = average potential energy per atom per unit mass

epm = total potential energy

epml = half of epij

eps = minimum energy (8.27e-21 J)

etot = average total energy

ffe = face centering parameter: used to define a box
within the control box used to encompass only the
liguid drop

£ij = force that atom i exerts on atom j

fm = forces on the particle

fnb = neighbor counting parameter

fofv = parameter in subroutine “"veldist*

fs = total force exerted on atom i per unit distance

fsij = force that atom i exerts on atom j per unit

distance
fxi,fyi,fzi = total forces on the particle
fxij, fyij,fzij = force that particle "i* exerts on *"j*

ar = radial distribution function

hh = parameter in subroutine "veldist*

hinst = parameter in subroutine "veldist*

i = counter

ij = counter

iloc = counter for the execution of the local loop
im = atom labeling parameter



inte = frequency that PE & KE are output
intlg = frequency that # of neighbours is output
intp = frequency that the position vectors are output
inttc = frequency of temperature control
intv = frequency that the velocity is output
irep = counter for the execution of the general loop
ixs = parameter used to update position of liquid drop
j = counter
jbeg = counting parameter for neighbor atoms within
»rlist"
jend = counting parameter for neighbor atoms within
*rlist® -
jh,31,3j1h,jl1 = parameters used in function “randf"
jm = atom labeling parameter
jnab = counter in "force" subroutine
k = counter
= parameter that places the atom in the correct
radial increment or interval ("prof")
kk = counter
kavg = how often averaging of properties is done
klatx, klaty,klatz = parameter for subroutine *lambda®
kprnt = how often data is printed out
list = list of all neighbors
lnay = how often neighbor routine is called
1po = controls position vector output
1sti = listvectors for interactions
1stj = listvectors for interactions
1lvo = controls velocity vector output
maxnab = limiting number for the neighbor list
ndr = number of radial intervals ("prof")
nij = adding parameter for interactive neighbor atoms
nlist = nunmber of atoms within the “rlist" radius
nloc = # times local loop is executed
nmax = number of particles in the simulation
nmol = number of atoms
nnb = neighbors
nr = number of atoms in region
nrl = parameter which decides whether an atom is used
in the calculation of the density profile
nrdels = counting parameter
nrdm = random seed
nrep = # times general loop is executed
nshell = number of shells
ntec = # of temperature controls imposed
nuni = unit cells in crystal
nvdels = parameter in subroutine "veldist*
nvol = unit cells in volume
nxs = parameter used in updating position of liquid
drop
01,02,03 = angular momentum (x,y,z)
offset = parameter in subroutine “veldist*
origns = parameter in subroutine *"raddist®
param = parameter for subroutine “lambda”
pi = 3.1415927
pidd = parameter for subroutine "lambda”
plr = long range pressure correction
point = related to list (neighbor counting parameter)
pr = pressure
prl = parameter used to construct the pressure
distribution
prb = pressure distribution
Dreavg = average pressure
press = pressure
rl,r2,r3 = position of particle minus half the box length
(*init")
= distance between atom i and j (“prof*)
= positions atom i w.r.t center of control volume
(“prof") -
ra2 = sum of rotational displacements squared per atom
rabi = reciprocal absolute distance between two atoms
rabs = absolute distance between two atoms
= absolute position w.r.t center of control volume
("prof")
radius = radial distance between two atoms
randf = randum nuber generator: "FUNCTION randf®
rcut = radial distance in which forces are considered
rdel = width of the spherical shell used in "veldist*
ri,rj = absolute position of i,j molecules

ril,ri2,ri3 = position of i molecule
rjl,rj2,rj3 = position of j molecule

rij = absolute distance between atoms i and j

rijqg = absolute distance between atoms i and j squared
rig,rjg = absolute position of i,j molecules squared

rk = point on grid midway between rkl and rk2

rkl,rk2 = first grid point before and after position "rk*
rknt = counter

rlist = distance larger than “rcut" including atoms that

are within "rcut* before the next timestep
rpld = radial position of the first grid
rxdum, rydum, rzdum = distance between two atoms
rxi,ryi,rzi = position vectors
rxij,ryij,rzij = distance between two atoms in x,¥, and z
X0, ryo,rzo = dummy variable used in updating neighbor list
sbré = rabs”(-6)
scl = length of conrel box for ligquid drop
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sig = collision diameter (potetial separation distance)

sinsum = parameter for subroutine "lambda"

sk = volume at grid position

sl = adding parameter for interactive neighbor atoms

sr2 = rabs”(-2)

sré = rabs” (-6)

st = temperature control scalar

svl,sv2 = parameter used to construct the pressure
distribution

time = nondimensional time

tini = initial temperature (X)

tins = nondimensional temperature

tmp = nondimensional absolute temperature

tmpavg = average temperature

ul = crystal length

ulr = long range potential energy correction

uls = nondimension crystal length

upcnt = tells the number of times neighbor list is
updated

update = logical

v = velocity of particle

v0 = parameter used in calculating pressure

v1l,v2,v3 = total translation

vli,v2 = parameter used to construct the pressure
distribution

vd = parameter used to construct the pressure
distribution

vd2 = parameter used to construct the pressure
distribution

vdel = parameter in subroutine “veldist"

ve = nondimensional velocity

velsqg = used to average kinetic energy

vi - = virial

vij = nondimensional Lennard-Jones potential

virsum = used to average virial

vl = length of the simulation box (m)

vli = reciprocal nodimensional length .of box

vis = nondimensional length of box

vmax = parameter in subroutine "veldist"

volshl = volume of shell

vrl,vr2,vr3 = total rotation
vsl,vs2,vs3 = velocity of the system

vsqgsum = sum of kinetic energy over time

wij = force that atom i exerts on atom j
(nondimensional)

wm = mass of atom

wu = used in force routine

X,¥.2 = coordinate of position vector of particle

xi = coordinate of position vector of particle

xsl,xs2,xs3 = distance that the liquid drop is off center
with respect to the center of the control volume
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