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Abstract—For predicting the fully developed upward flow in a uniformly heated, vertical pipe by taking
account of the buoyancy force, the k—& models of turbulence for low Reynolds number flows were adopted.
The regime map for forced, mixed and natural convections as well as for laminar and turbulent flows was
plotted from the numerical predictions. At the same time, experiments were carried out at Reynolds
numbers of 3000 and 5000, with the Grashof number varying over a wide range, by using pressurized
nitrogen gas as a test fluid. In agreement with the prediction, buoyancy-induced impairment of heat transfer
was correctly measured in the mixed convection regime. Furthermore, from hot-wire measurements,
complete laminarization was demonstrated in the mixed-convection region at a Reynolds number of 3000.

INTRODUCTION

IN CERTAIN practical equipment, forced and natural
convection may appear combined together. In these
cases, it is of prime interest to discriminate which
convection regime is dominant as well as to resolve
how much the heat transfer coefficient contributes.
For example, in the case of a hypothetical loss-of-
coolant accident of a pressurized water reactor
(PWR), cold water will be supplied to the downcomer,
and the mean flow rate there will often decrease. In
that case, accurate prediction of the heat transfer
coefficient is needed to estimate the magnitude of the
thermal shock that the reactor wall will suffer. Other
examples are given by solar heat collectors, high-tem-
perature gas-cooled nuclear reactors, supercritical
boilers, and cooling of electronic equipment.

- Combined forced and natural convection, es-
pecially in turbulent flow, is not fully explored. Until
recently, the methods most often used to discriminate
between forced, mixed and natural convections have
been to refer to the classical regime map suggested by
Metais and Eckert [1], or to rely on the more classical
rule proposed by McAdams : one calculates the heat
transfer coefficient from both forced-convection and
natural-convection relations and then uses the larger
value [2]. Shitsman [3] compared heat transfer data
for upward and downward flows of water in a heated
tube at supercritical pressures and reported that, in
the case of upward flow, the temperature distribution
along the tube sometimes showed a local temperature
rise due to the local impairment of heat transfer, while,
for downward flow, heat transfer was stable and better
than the upward flow under the same flow rate and
the same heat flux. With a view to explaining these
phenomena by the effect of buoyancy force, a number
of researches in relation to the combined convection

have been pushed forward in the field of heat transfer
for supercritical fluids, until Watts and Chou [4]
recently presented heat transfer correlations per-
forming experiments over a wide range of parameters
with supercritical pressure water. A detailed review of
the work to date is available in Jackson and Hall [5].
The fruits of these researches are the discrimination
equations between forced, mixed and natural con-
vection in a vertical pipe presented by Hall and Jack-
son [5, 6] and Tanaka er al. [7, 8], as well as the
respective equations for the heat transfer correlation
in each regime [4, 9]. However, some of these results
cannot be easily accepted as universal, since most
of them were based on experiments performed with
supercritical pressure fluids which involved a large
change of physical properties. Other experiments with
air or water [9, 10], on the other hand, needed very
large experimental facilities to attain large Grashof
numbers, and they could only cover fairly limited
ranges of the experimental Reynolds and Grashof
numbers.

Abdelmeguid and Spalding [11] applied, for the first
time, a two-equation model of turbulence to flow and
heat transfer in pipes with buoyancy effects. They
were fairly successful in reproducing the difference of
heat transfer between upward and downward flows
revealed by experiments, as well as predicting velocity
and temperature distributions in agreement with the
experimental results obtained for the upward flow of
mercury in a heated pipe [12]). However, their model
adopted a simple treatment near the wall, utilizing
the wall function; an approach which seems open to
question.

Flow systems in a vertical pipe are divided into two
kinds. Those in which the buoyancy force acts in the
same direction as the flow (e.g. a heated upward flow
or a cooled downward flow) are termed ‘aiding’ flows.
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C,, C,, C;, C, constants in the turbulence
model

¢,  specific heat at constant pressure

D inner diameter of pipe

d  diameter of orifice

f,  function in the turbulence model

Gr  Grashof number, gB(T;— T,.)D>/v?

g  gravitational acceleration

h  heat transfer coefficient, ¢,,/(T,— Tr)

K acceleration parameter, (v/U2)(dU,,/dx)

k  turbulence kinetic energy

l heated length of the test section

Nu  Nusselt number, ¢, D/[(T,,— T,,)A]

p  pressure

p  real pressure

q  heat flux

R radius of pipe

Re Reynolds number, U, D/v;

R, turbulence Reynolds number, k?/(ve)

r radial coordinate

T  temperature

t time

U mean streamwise velocity

u* friction velocity, /7./p

V' output voltage of the hot-wire anemometer

NOMENCLATURE

x  streamwise distance from start of heating
section

¥y distance from the wall

y*  dimensionless distance, u*y/v.

Greek symbols
B volumetric expansion coefficient
dissipation rate of turbulence kinetic
energy
A thermal conductivity
A, turbulent thermal conductivity
1 dynamic viscosity
u,  turbulent viscosity
v kinematic viscosity
p  density
o, 0, constants in the turbulence model
o, turbulent Prandtl number
T shear stress.

™

Subscripts
a  cross-sectionally averaged value
f  value at film temperature T; = (T, + T;,)/2
m  refers to bulk fluid condition
w  refers to wall
0  refers to pure forced convection.

On the other hand, when the directions are opposite,
the systems are called ‘opposing’ flows. The nature of
these two kinds of systems turns out to be intrinsically
different, in view of the apparent difference in the
distortion pattern of shear-stress distributions due to
buoyancy near the wall.

As a first step, this paper deals with the aiding flow,
because in this case the heat transfer impairment that
occurs seems important from theoretical as well as
practical viewpoints. A characteristic feature of the
mixed convection is the rapid change of the shear-
stress near the wall, where, in the case of pure forced
convection, the law of the wall based upon a constant
shear-stress distribution should prevail. At this point,
the foregoing calculations by Abdelmeguid and
Spalding [11] are questionable, as mentioned pre-
viously. Recently, several turbulence models for low
Reynolds number flows have been presented [13],
which can describe the flow right to the wall. They are
expected to have higher predictability in the mixed
convection. In this paper, predictions from two such
turbulence models are presented first. Then, they are
compared with experiments using nitrogen gas as a
test fluid. In the experiments the pressure of nitrogen
gas was changed in the range from atmospheric pres-
sure to 5 MPa, to obtain a wide range of Grashof
numbers extending about four orders of magnitude;
because the Grashof number varies in proportion to

the square of pressure as the dynamic viscosity of a
gas is almost constant irrespective of pressure. The
distinctive features of the present experiments are
(i) that both large values and the wide range of the
Grashof number could be realized in a single test
tube of a laboratory size, and (ii) that the physical
properties could be regarded as essentially constant
except for the buoyancy effect.

NUMERICAL INVESTIGATION

Basic equations

Momentum and energy equations can be written
as follows for upward flow in a uniformly-heated,
vertical pipe, provided that the flow is fully developed
and that the physical properties are regarded as
constant except for the effect in the buoyancy term
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where the subscripts m and a refer to the bulk fluid
condition and the cross-sectionally-averaged value,
respectively. In deriving equation (1), we have defined
0p/0x = 0p/0x+pg with p being the real pressure.
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Averaging this definition equation over the cross-
section results in the pressure term together with the
buoyancy term in equation (1). In the case of the
uniformly heated flow, it may be controversial to
assume the fully developed state, since the bulk-fluid
temperature increases constantly along the flow.
However, as a way of realizing a flow with a prescribed
Grashof number, we can imagine a world where the
gravitational acceleration is so large that the wall heat-
flux can be taken to be small enough for the bulk-
fluid temperature rise to become negligible. Under such
a condition, the fully developed state would certainly
be attained. Integrating equations (1) and (2) over the
cross-section of the pipe yields
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As turbulence models, we adopt the K —¢& model of
Jones and Launder [14, 15] and its modified version
by Kawamura [16]. The latter was devised searching
for better predictability in transient turbulent pipe
flows. Both of the models are expressed as
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where, in the case of the model by Jones and Launder,

w = Cf,pk*[e C, =2.0[1-0.3 exp (— R?)]

Ay = Cploy C;=20

g, =10 C,=0.09

6, =13 [ =exp [—2.5/(14R,/50)]
C, =155 R, = k*/(ve).

Kawamura has modified only the coefficient C, as
follows

Cy = 1.5{1+0.15 exp [—(R,/50)°]}.

The turbulent Prandtl number o, is assumed to be
constant at 0.9. The buoyancy-effect terms due to
turbulent mixing have been ignored in both k and ¢
equations, because the main turbulent heat flux in this
system is normal to the gravitational acceleration and
the temperature gradient in the direction of gravity
0T/0x is assumed to be small.

The boundary conditions for equations (1), (2), (4)
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and (5) are
r=D[2:
dUu dTr ¢,
U‘_07 E__Tw/ﬂ’ T= Tw’ a_T
_o. Y% _de_
=Y T A
r=Df2: k=¢g=0.

For the convenience of computation procedure, the
following additional boundary conditions as to the
symmetry of profiles, which are already included in
the implication of equation (3), are introduced.

av_ar_
dr — dr

Equations (1), (2), (4) and (5) are discretized on 100
grid nodes distributed with larger concentration near
the wall, by means of the control-volume method
described by Patankar [17]. The initial profiles for
iterative solution are set as follows assuming the fully
developed isothermal flow at the given Reynolds num-
ber, i.e. the velocity profile assumes the 1/7th power
law with linear part near the wall, the turbulence
kinetic energy k is given a constant value of 3u*?
with a modification of k = u**y?/v? near the wall, the
dissipation rate is assumed to be 0.41k*?/, and finally
the temperature is set constant as T = T,

r=0:

Numerical results

Eight Reynolds numbers were selected in a range
between 1000 and 25,000. For each Reynolds number,
the Grashof number was varied so as to cover all the
three regimes of forced, mixed and natural convection.
Here, the Reynolds number and the Grashof number
are defined as

U.D T,—T.)D?
Re=—22 Gr= M (6)
\ %3

where the subscript f refers to the value at the film
temperature T; = (T\,+ Ty,)/2. These definitions are
consistent with those used in the data reductions
described later, and assume application of the results
to the case with a large change of physical properties
[7]. From the calculated results, shown in Fig. 1, vari-
ations of the Nusselt number with the Grashof
number, for three Reynolds numbers of 3000, 5000
and 10,000, are obtained. Here, the Nusselt number
is defined as

hD q9. D
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At the lowest Grashof number for each calculation,
almost pure forced convection seems to be realized.
As the Grashof number increases, the Nusselt number
begins to decrease, takes a minimum, and then
increases almost in proportion to the 0.45th power of








