Horizontally-Alignment Growth of Single-Walled Carbon Nanotubes on Quartz Substrates

Shohei Chiashi, Taiki Inoue, Theerapol Thurakitseree, Shinya Aikawa, Rong Xiang, Junichiro Shiomi and Shigeo Maruyama

Department of Mechanical Engineering,

The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan

maruyama@photon.t.u-tokyo.ac.jp

Orientation control of single-walled carbon nanotubes (SWNTs) is important for the analysis of their growth mechanism and the fabrication of SWNT applications. One of the orientation control techniques was horizontallyalignment. It is well-known that SWNTs can grow on sapphire [1] and crystal quartz substrates [2] along specific directions.

Crystal quartz substrates have various cut angles, as shown in Fig. 1. ST-cut substrates are most popularly used and SWNTs are grown along

Fig. 1 Crystal quartz substrates of various cut-angle.

the direction of the x-axis on ST-cut surfaces. The orientation is improved after annealing the substrates at high temperature for an extended time. However, ST-cut is artificial surface and the atomic structure of ST-cut surface is not clear. In this study, R-face (101) crystal quartz substrates were used and we investigated SWNT growth on them. R-face (101) is one of the stable surfaces that appear on natural quartz crystal, and ST-cut surface is roughly parallel to R-face. Figure 2(A) shows an AFM image of R-face (101) surface. Because the step and terrace structure clearly appeared and the step height was approximately 0.3 nm, which agreed with the plane spacing of R-face (101), the terrace area was (101) atomic surface. On R-face substrates, SWNTs were synthesized by ACCVD method. Zeolite supported Fe/Co nano-particles were used as the catalyst. A typical AFM image of SWNTs grown on R-face is shown as Fig. 2(B).

SWNTs were horizontally aligned along the direction of x-axis, which indicated that the atomic structure of (101) plane aligned SWNTs. SWNTs were aligned on ST, R, Y-cut and Rface substrates, while SWNTs were randomly grown on X-cut [3]. It indicated that the alignment of SWNTs on crystal quartz substrates came from the atomic structure along the direction of x-axis.

[1] H. Ago et al., Chem. Phys. Lett., 408 (2005) 433.

[3] C. Kocabas, et al., J. Phys. Chem. C, 111 (2007) 17879.

^[2] J. Xiao, et al., Nano Letters 9 (2009) 4311.