S10 – 5

Optical spectroscopy of vertically aligned SWNTs synthesized from alcohol

E. Einarsson1, Y. Miyaochi2, Z. Zhang3, Y. Murakami3 and S. Maruyama1

1Department of Mechanical Engineering,
The University of Tokyo, Tokyo 113-8656, Japan
2Institute for Chemical Research,
Kyoto University, Uji, Kyoto 611-0011, Japan
3Department of Chemical System Engineering,
The University of Tokyo, Tokyo 113-8656, Japan

Keywords : Spectroscopic studies of CNTs | Optical properties of CNTs

In this study, we investigate various aspects of optical spectra from vertically aligned single-walled carbon nanotubes (VA-SWNTs). The obtained spectra from optical absorbance, resonance Raman spectroscopy, and photoluminescence excitation (PLE) spectroscopy are compared to SWNTs synthesized by other methods, particularly non-aligned SWNTs synthesized from alcohol. Since the median bundle size in the VA-SWNT sample is only six nanotubes [1], direct PLE measurement is expected. From such measurements, we observe various higher-order Raman modes consistent with isolated SWNTs [2], as well as Raman excitation resonant with the outgoing emission energy. To improve the dispersion yield, a bath-sonication technique [3] was necessary for conventional PLE measurements, which were obtained using Ti:Sapphire laser excitation. By decomposing the parallel and perpendicular components of the PLE spectra for normal and 13C VA-SWNTs, we investigate higher order excitonic states in the PLE map.