2. Fundamentals of Molecular Dynamics Method

2.1 Equation of Motion and Potential
2.2 Examples of Potential
 2.2.1 Lennard-Jones Potential
 2.2.2 Potential Models for Water
 2.2.3 Potential Models for Carbon and Silicon
2.3 Integration of Equation of Motion
2.4 Boundary Condition
2.5 Initial Condition, Temperature and Pressure Control

Equation of Motion

\[m \frac{d^2 \mathbf{r}_i}{dt^2} = - \nabla \Phi(\mathbf{r}_i) \]

Pair Potential Approximation

\[\Phi(\mathbf{r}_{ij}) = \frac{1}{2} \sum_i \sum_{j>i} \phi(r_{ij}) \]

Lennard-Jones (12-6) Potential

\[\phi(r) = 4 \epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right] \]

Parameters for inert molecules:

<table>
<thead>
<tr>
<th>(\sigma) [(\text{nm})]</th>
<th>(\epsilon) [(\text{J})]</th>
<th>(\sigma T) [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne</td>
<td>0.274</td>
<td>0.50x10^{-21}</td>
</tr>
<tr>
<td>Ar</td>
<td>0.340</td>
<td>1.67x10^{-21}</td>
</tr>
<tr>
<td>Kr</td>
<td>0.365</td>
<td>2.25x10^{-21}</td>
</tr>
<tr>
<td>Xe</td>
<td>0.398</td>
<td>3.20x10^{-21}</td>
</tr>
</tbody>
</table>

Cut-Off of potential: \(r_c = 2.5 \sim 5.5 \sigma \)

\[\phi(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right] + 8 \epsilon_c \left(r - r_c \right)^6 - 4 \epsilon_c \left(r - r_c \right)^{12} \]

Small Droplets

Only 256 molecules

864 molecules

Lennard-Jones (12-6) Potential
Non-dimensional Form for L-J System

<table>
<thead>
<tr>
<th>Property</th>
<th>Reduced Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length r*</td>
<td>(r/\sigma)</td>
</tr>
<tr>
<td>Time t*</td>
<td>(t/\tau) = (t(\sigma^2m/\epsilon)^{1/2})</td>
</tr>
<tr>
<td>Temperature T*</td>
<td>(t(\epsilon/\sigma^2m)^{1/2})</td>
</tr>
<tr>
<td>Force f*</td>
<td>(f/\sigma)</td>
</tr>
<tr>
<td>Energy (\phi^*)</td>
<td>(\phi/\epsilon)</td>
</tr>
<tr>
<td>Pressure P*</td>
<td>(P\sigma^3/\epsilon)</td>
</tr>
<tr>
<td>Number density N*</td>
<td>(N/\sigma^3)</td>
</tr>
<tr>
<td>Density (\rho^*)</td>
<td>(\rho/\sigma^3)</td>
</tr>
<tr>
<td>Surface Tension (\gamma^*)</td>
<td>(\gamma\sigma^2/\epsilon)</td>
</tr>
</tbody>
</table>

Lennard-Jones Potential (3)

Phase Diagram

\(T \)-p

<table>
<thead>
<tr>
<th>Temperature T*</th>
<th>Pressure P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>0.8</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Number density \(\rho^* = \rho\sigma^3 \)

Lennard-Jones Potential (4)

Phase Diagram

\(p-v \)

<table>
<thead>
<tr>
<th>Volume v*</th>
<th>Pressure (p^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Lennard-Jones Potential (5)

Small Droplets

Potential for Water (BNS, ST2)

BNS potential by Ben-Naim and Stillinger (1972)

ST2 potential by Stillinger and Rahman (1974)

\(\phi_{12}(R_{12}) = 4\epsilon_{12}\left[\frac{\sigma_{12}}{R_{12}}\right]^{12} - \left(\frac{\sigma_{12}}{R_{12}}\right)^6 + S(R_{12})\sum_j \frac{q_j q_i}{4\pi\epsilon R_{ij}^3} \)

Potential for Water (SPC, SPC/E)

SPC potential by Berendsen et al. (1981)

SPC/E potential by Berendsen et al. (1987)

\(\phi_{12}(R_{12}) = 4\epsilon_{12}\left[\frac{\sigma_{12}}{R_{12}}\right]^{12} - \left(\frac{\sigma_{12}}{R_{12}}\right)^6 + \sum_j \frac{q_j q_i}{4\pi\epsilon R_{ij}^3} \)
Potential for Water (TIP4P)

\[\phi_2(R_1, R_2) = 4e^2 \left(\frac{\sigma_{02}}{R_{12}} \right)^{12} - \frac{\sigma_{02}}{R_{12}} + \sum_{j \neq i} \frac{q_i q_j}{4\pi\varepsilon_0 R_{ij}} \]

\[\angle \text{HOH} = 104.52^\circ \]

MCY potential by Matsuoka et al. (1976)
CC potential by Carravetta & Clementi (1984)

Potential for Water (Comparison)

<table>
<thead>
<tr>
<th>Potential</th>
<th>ST2</th>
<th>SPC/E</th>
<th>TIP4P</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_{OH}) [nm]</td>
<td>0.100</td>
<td>0.100</td>
<td>0.095</td>
<td>0.095</td>
</tr>
<tr>
<td>(\angle \text{HOH}) [°]</td>
<td>109.47</td>
<td>109.47</td>
<td>104.52</td>
<td>104.52</td>
</tr>
<tr>
<td>(a) [Å]</td>
<td>0.52605</td>
<td>1.0797</td>
<td>1.0772</td>
<td>N/A</td>
</tr>
<tr>
<td>(\sigma_{OO}) [nm]</td>
<td>0.08</td>
<td>0</td>
<td>0.015</td>
<td>0.024</td>
</tr>
<tr>
<td>(q_a) [C]</td>
<td>0.2357 (e)</td>
<td>0.4238 (e)</td>
<td>0.52 (e)</td>
<td>0.18559 (e)</td>
</tr>
<tr>
<td>(q_m) [C]</td>
<td>0.2357 (e)</td>
<td>0.8476 (e)</td>
<td>-1.04 (e)</td>
<td>-0.37118 (e)</td>
</tr>
<tr>
<td>Charge of electron (e = 1.60219 \times 10^{-19} \text{C})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Polarizable & Flexible

Flexible potentials

- Dang & Pettitt (1987)
- Anderson et al. (1987)

Polarizable potentials

- MCY: Niesar et al. (1990)
- SPC: Bernardo et al. (1994)

Rigid: Effective Pair Potential

- Dipole moment: Isolated water: 1.85 D
 - SPC/E: 2.351 D

Droplet of Water

\[\phi_{ij}(R_{ij}) = \sum_{j=i}^{\infty} \frac{q_i q_j}{4\pi\varepsilon_0 R_{ij}} + a_i \exp(-b_i R_{ij}) + a_j \exp(-b_j R_{ij}) + \exp(-b_j R_{ij}) \]

Potential for Covalent System (C, Si)

Dang & Pettitt (1987)

\[\Phi = \sum_{i<j} f_{ij}(r_{ij}) \left[\hat{\mathbf{r}}_i \cdot \mathbf{b} \right] \mathbf{V}_{ij}(r_{ij}) \]

Potential for Covalent System (C, Si)

![Tersoff's Silicon](image)

Example: Brenner Carbon (modified)

Integration of Newton’s Equation

- **Verlet’s Method**
 \[
 \mathbf{r}(t + \Delta t) = 2\mathbf{r}(t) - \mathbf{r}(t - \Delta t) + \frac{(\Delta t)^2}{m} \mathbf{F}(t)/m,
 \]
 \[
 \mathbf{v}(t + \Delta t) = \mathbf{v}(t) + \frac{(\Delta t)^2}{2m} \mathbf{F}(t)/m.
 \]

- **Leap Flog Method (Modified Verlet)**
 \[
 \mathbf{v}(t + \Delta t/2) = \mathbf{v}(t) + \frac{\Delta t}{2m} \mathbf{F}(t)/m,
 \]
 \[
 \mathbf{r}(t + \Delta t) = \mathbf{r}(t) + \Delta \mathbf{v} + \frac{\Delta t^2}{2} \mathbf{F}(t)/m.
 \]

Order of \(\Delta t \)
- 0.005 \(\tau \) for 10 fs with argon
- 0.5 fs for covalent Carbon

Mirror Boundary
- Simple Reflection

Boundary Condition (Gas)

- Mirror Boundary
- Periodic Boundary

Boundary Condition (Periodic)

- Potential must be Cut-Off at L/2

Ewald sum method for Coulomb Term

Example
Boundary Condition (Solid Wall)

One-Dimensional Function by Bulk Integration

$$\Phi(z) = \frac{2 \pi \rho \sigma_{INT}}{45 m} \frac{\left(\frac{\sigma_{INT}}{z} \right)^3 - \left(\frac{\sigma_{INT}}{z} \right)^2}{z}$$

Boundary Condition (Solid Wall)

One-Dimensional Function by Surface Integration

$$\Phi(z) = 4 \sqrt{3 \pi} \frac{\sigma_{INT}^2}{R_e} \left(\frac{\sigma_{INT}}{z} \right)^{10} - \left(\frac{\sigma_{INT}}{z} \right)^{2}$$

Boundary Condition (Solid Wall)

Initial Condition

$$v = \sqrt{3 k_B T_C / m}$$

Make Sure Potential is not Too Large

Temperature Control

Velocity Scaling

$$v' = v \sqrt{T/T_e}$$

Anderson method [Anderson (1980)]

Replace Velocity of Randomly Selected Molecule to Maxwell-Boltzmann Distribution

Nosé-Hoover Thermostat [Nosé (1984), Hoover (1985)]

$$m \frac{dt^2}{dt} = F - \frac{\zeta m}{\Delta t} \frac{dt}{dt}$$

$$\frac{d \zeta}{dt} = \frac{2(F_{\perp} - E_{\perp})}{Q}$$
Pressure & Stress Control

Andersen (1980)
Change Box Size as if Piston is Connected

Extension of Anderson: Change Shape of Box

Berendsen et al. (1984)
\[\frac{dP}{dt} = \frac{(P_r - P)}{t_r} \]
\[r = r^{\infty} \]
\[\chi = 1 - \beta \frac{dr}{dt} (P_r - P) \]