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Chapter 1 
 

Introduction 
 

 

 

1.1 Background 
 

 Dimensionally, carbon can take many forms: 3D-diamond and graphite, 2D-graphene – one layer 

of graphite, 1D-carbon nanotube (CNT) and 0D-fullerene (See Fig 1.1). The Fullerene was discovered in 

1985 by Robert F. Curl, Sir Horold W. Kroto, and Richard E. Smalley [1], who were awarded the Nobel 

prize in chemistry in 1996.  

 In 1991, Iijima et al. discovered multi-walled carbon nanotubes (MWNT) when they made 

fullerenes by arc-discharge. Two years later, they could make a single-layer rolled up carbon tube, and they 

named it “single-walled carbon nanotube (SWNT)” [2,3]. Due to its nano-structural outstanding electronic, 

thermal and mechanical properties, it has been one of the most focused topics in nano-technology research.  

    
(a) SWNT         (b) C60 

Figure 1.1 (a) A single-walled carbon nanotube (1D) and (b) C60 or the “buckyball”, known as a quantum dot. 
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1.2 The structure of SWNT 
 

 An SWNT structure is formed as if it is rolled up from a graphene sheet, and its diameter ranges 

from 1 nm to 5 nm, but its length from μm to mm. Due to the high aspect ratio of SWNTs, it is treated as a 

quasi-one-dimensional material. The form it takes depends on which chiral vector is chosen for rolling up 

from graphene. This chiral vector mainly decides the diameter and chiral angle of SWNTs, and they are 

key factors for physical properties. 

 The structure of the sp2 carbon network of a two-dimensional (2D) graphene sheet is described 

as a hexagonal lattice in Fig. 1.2(a). The unit cell shown in Fig. 1.2(a) contains two non-equivalent C 

atoms. Vectors a1 and a2 represent the unit vectors of the cell. The Brillouin zone of the graphene is shown 

in Fig. 1.2(b). This is the momentum space reciprocal lattice, and spanned by the reciprocal space basis 

vectors b1 and b2. These are expressed as  

a1 







=

2
,

2
3 aa ,  a2 








−=

2
,

2
3 aa  (1.1) 

and 

b1 






=
aa
ππ 2,

3
2

,  b2 





 −=

aa
ππ 2,

3
2

 (1.2) 

 

where |a1|=|a2|=a= 3 ac-c, where ac-c=1.452 Å is the distance between neighboring carbon atoms. By 
contrast, high symmetry points at the center, corner, and the midpoint of the neighboring corners of the 

Brillouin zone are denoted as  Γ, Μ, and Κ points, respectively. 

 The structure of a carbon nanotube is specified by the chiral vector Ch as shown in Fig. 1.3, 

which defines the direction of rolling up the graphene sheet in to a tube. The chiral vector Ch is expressed 

in terms of real-space unit vectors a1 and a2 and two positive integers n and m as 

    
Figure 1.2 (a) The unit cell of graphene (enclosed by the dashed rhombus) contains two atoms A and B. (b) 
The Brillouin zone (green region), and high symmetry points  Γ, Μ, and Κ. The real- and reciprocal-space 
unit vectors are shown by ai and bi (i=1, 2).  
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Ch=na1+ma2 ≡(n,m) (1.3) 

Since the length of Ch indicates the circumferential length of the SWNT, the diameter of the SWNT, dt is 

expressed as  

dt πππ
nmnaCCC hhh ++

=
⋅

==
22

 (1.4) 

The angle formed by Ch, and a1 is termed the chiral angle θ, and its value is 0 ≤ θ ≤30° due to the 

hexagonal symmetry of the honeycomb lattice; specifically, expressed as  

nmn
mn

aC
aC

h

h

++

+
=

⋅
=

22
1

1

2
2c o sθ  (1.5) 

The translation vector T is defined as the unit vector of the SWNT, which is parallel to the SWNT axis. It 

is oriented parallel to the SWNT axis, and is perpendicular to Ch. The translation vector is defined as 

T = t1a1 + t2a2 ≡ (t1,t2), (1.6) 

( t1
Rd

nm +
=

2
,  t2

Rd
mn +

−=
2

) 

where the value dR is the greatest common divisor (gcd) of (2m+n) and (2n+m). 

By Euclid’s law, it turns out that 





−
−

=
dofmutiplenotismnifd

dofmutipleismnifd
d R 3)(3

3)(
 (1.7) 

the vectors Ch and T define the rectangle OAB′B in Fig. 1.3, which encloses the unit cell of the SWNT. The 

number of hexagons in the unit cell is N, where 

R

h

d
nmn

aa
TC

N )(2 22

21

++
=

×
×

=  (1.8) 

The combinations of (n,m) give rise to many possible SWNT structures, which generally can be classified 

by chiral angle, and be described as achiral (zigzag and armchair) and chiral SWNTs (See Fig. 1.4). 

 
Figure 1.3 The chiral vector Ch for an (n,m) = (5,2) SWNT. The chiral angle is shown by θ. 
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 (a) Zigzag (10,0)  (b) Armchair (8,8)       (c) Chiral (10,5) 

 

Figure 1.4 Examples of the three different SWNT geometries, zigzag, armchair and chiral. 
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1.3 Thermal conductivity of SWNT 
 

Since the SWNT was discovered, it has been investigated in various fields to take advantage of 

its outstanding electrical, optical, mechanical, and thermal properties. In particular, its very high thermal 

conductivity is believed to surpass even that of diamond, so numerous studies have so far investigated its 

thermal properties [4-6]. Since 1999, the number of experiments measuring the thermal properties of 

SWNTs has increased.  

 In the beginning, a mat type bundles of carbon nanotubes, so-called “nanotube mats” or “Bucky 

mats” was taken to measure the thermal conductivity of SWNTs by Hone et al. Through the above 

experiments, thermal conductivity of SWNTs was found to depend on the temperature [6]. Thermal 

conductivity of SWNTs simply increases in the range from 10 to 400 K, and it is about 200 W/mK at 300 

K [7]. Moreover, they specified the contribution of electrons to thermal conductivity of SWNTs by 

comparing that to electrical conductivity. Shi et al. made it possible to measure the temperature of SWNTs 

using a scanning thermal microscope (SThM) which used a thin thermoelectric film as a cantilever. 

However, the thermal conductivity of SWNTs is not yet fully understood 

 On the other hand, many studies by molecular dynamics simulation have been reported about the 

thermal conductivity of SWNTs since around 2000 [8-10]. One of them indicated the thermal conductivity 

of SWNTs at 300 K is as much as 6600 W/mK [8], compare this to copper, a metal well-known for its 

good thermal conductivity, which transmits 410 W/mK. However, the value of thermal conductivity is not 

uniformly distributed so there is not yet a quantitatively reliable value. For these reasons, it is plausible that 

the means to determine temperature distribution of the system is not optimized (i.e., the stationary 

molecular dynamics simulation and non-stationary molecular dynamics simulation by Green-Kubo 

equation), or that the definition of cross-sectional area of SWNTs during measurement for heat flux is 

unreliable, or the system being simulated is so small that it is easy to be influenced by wobble of the 

nanotube. 

 Recently, it is not only the expectation of high thermal conductivity that has driven the many 

simulation studies of SWNT thermal conduction, but also a report about the analysis of thermal 

conductivity inside a solid by the approximation of phonons in the microscale [11]. Here, the analysis 

using molecular dynamics simulation is expected to obtain a group velocity of phonons which requires a 

qualitative understanding and quantitative estimation for the cradle of the phonons (Umklapp process by 

phonon deflection, interfacial dispersion) [12].  

 Maruyama et al. have so far made many studies about SWNT thermal conductivity using a 

simplified potential derived from the Brenner-Tersoff type potential between carbon atoms, used in 

fullerene structures and the process of SWNT synthesis [13-15]. In addition, they specified thermal 

conductivity dependence on length by simulation for SWNT with a length ranging 10 – 400 nm. 
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1.4 Purpose of this research 
 

Since SWNTs were discovered, they have been one of the most anticipated new materials, and 

numerous studies have been conducted. In particular, there is a need to perform analysis from various 

perspectives in order to take advantage of the thermal properties of SWNTs, however, most studies so far 

focused only on the thermal conductivity inside SWNTs and not on the interfacial heat and mass transfer 

between the SWNT and surrounding materials. 

The increase in thermal conductivity of SWNT-epoxy composites is much more than for 

larger-diameter carbon fibers [16], and SWNTs can lead to materials with reduced interfacial resistance 

and higher composite thermal conductivity [17]. Understanding of thermal boundary resistance (TBR), 

however, is essential to above cases, because the interfacial thermal resistance of carbon nanotubes-solid, 

carbon nanotubes-liquid and carbon nanotubes-gas, is not clarified yet, so it cannot be applied generally. 

 There have recently been extensive studies on the TBR between SWNTs and surrounding 

materials with strong motivation [16-27]. Maruyama and Kimura have reported a temperature jump 

resulting from thermal resistance exists at solid-liquid surface [26]. Ohara and Suzuki investigated 

interfacial thermal resistance at a solid-liquid surface with the concept based on intermolecular energy 

transfer [27]. Furthermore, Carlborg et al. investigated the TBR between an SWNT and Lennard-Jones 

molecules considering the contribution of inelastic transport [20]. Additionally, Hu et al. demonstrated the 

influence of binding energy on the TBR between an SWNT and air [23]. While these studies have revealed 

interfacial thermal transport of specific systems or parameters, the general law or model which is necessary 

to design thermal devices and simplify thermal management is not available to date.  

In this study, as a thermal property of SWNT, I investigate the interfacial thermal transport 

between SWNT and various surrounding Lennard-Jones (LJ) fluids over wide density and temperature 

ranges using molecular dynamics (MD) simulation, adopting the lumped heat capacity method. Here, I 

qualify the interfacial thermal transport in terms of the thermal boundary conductance (TBC), the 

reciprocal of the TBR. My primary aim here is to identify the general scaling law, which would be 

important in predicting and designing thermal transport interfaces. 
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Chapter 2 
 

Molecular Dynamics Simulation 
 

 

 

2.1 Guidelines 
 
 Single-walled carbon nanotubes (SWNTs) are on the nanoscale, so it is hard to measure their 

thermal properties experimentally by generating a temperature difference. Therefore, many studies about 

thermal properties of SWNT have been investigated by numerical simulations. 

 The Maruyama laboratory where I belong has so far studied thermal properties of SWNT by 

using molecular dynamics (MD) simulation because it is appropriate for analysis on the required length- 

and time-scales. In addition、I investigated the thermal boundary conductance between SWNT and 

surrounding fluids using MD simulation in this study. In this chapter, I describe potential between atoms, 

numerical integration, temperature control and boundary conditions which are needed for MD simulation. 
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2.2 Potential energy between atoms 
 

2.2.1 Brenner Tersoff potential  

 The inter-atomic potential used for SWNT in these MD simulations is the Brenner potential used 

for synthesis progress simulation of diamond thin films [28], which is modified by adding a π-bond and 

adding hydrocarbon interaction from the poly-atomic potential proposed by Tersoff. For this potential, the 

force between carbon atoms which are separated by a long distance is neglected through use of a cut-off 

function f(r), and it is considered that the bonding energy depends on the coordination number of each 

carbon atom. These changes improve the model so that it can represent many structures such as a small 

hydrocarbon, graphite and diamond. 

 The potential energy of the system is shown as the sum of the energy of each bonding atom as  

∑ ∑
>

−=
i jij

i jAi ji jRb rVBrVE
)(

* )(([  (2.1) 

where VR(rij) and VA(rij) are repulsive force and attractive force, respectively. Those are represented by a 

Morse type exponential function including the cut-off function f(r) and are described by  

)(2e x p {
1

)()( e
e

R RrS
S
DrfrV −−
−

= β  (2.2) 

)(2e x p {
1

)()( e
e

A RrS
S
DrfrV −−
−

= β  (2.3) 

π


















−

−
+=

0

c o s1
2
1
1

)(
12

1

RR
Rrrf     

( )
( )
( )2

21

Rr
RrR

Rr

>
<<

<

 (2.4) 

B* is given in terms of a coefficient of repulsive force for the function, and θijk is the angle of neighboring 

bonds between i-j and j-k. 

( )c o
i jjii j

j ii j
i j NNNF

BB
B ,,

2
* +

+
=  (2.5) 

( ) ( )[ ]
( )

δ

θ
−

≠








+= ∑

jik
i ki j kci j rfGB

,
1  (2.6) 

( )
( ) 











++
−+= 22

0

2
0

2
0

2
0

0 c o1
1

θ
θ

d
c

d
c

aGc  (2.7) 

where Fij (Ni, Nj, Nij
conj) is given in terms of a substituted term for π covalent bond as  

( )
( )
∑

≠

=
jk

i ki rfN  (2.8) 
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 (2.10) 

( )∑
≠

=
)( km

mi k rfx  (2.11) 

The above values are the optimized values for π covalent bonds, such as those among hydrocarbon 

molecules, which is added to make the structure of a diamond stable. This study does not concern about 

tracing for the progress of a cluster, so the substituted term was omitted for load reduction. Constants used 

in equations (2.1) to (2.11) are shown in Table 2.1. 

 There are two parameters for the Brenner potential: Parameter I optimized for the formation of 

cluster focusing on the distance between carbon atoms, and parameter II optimized for the measurement of 

physical properties of the force between carbon atoms [28]. The primary aim of this study is to investigate 

the interfacial thermal property, so the parameter II is employed for focusing on the force. 

 

 

Table 2.1 Carbon-Carbon potential parameters. 
De (eV) S β (Å-1) Re (Å) R1 (Å) R2 (Å) δ a0 c0 d0 

6.0 1.22 2.1 1.39 1.7 2.0 0.5 0.00020813 330 3.5 
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2.2.2 Lennard-Jones potential  

I employed the Lennard-Jones (LJ) potential between carbon atoms of SWNT and Lennard-Jones 

molecules of the surrounding fluid, which represent the Van Der Waals force which is usually used for MD 

simulation. The Lennard-Jones potential is a function of the inter-atomic distance r as 

( )


















−






=

61 2

4
rr

r σσεφ  (2.12) 

where ε and σ are the energy and length scales, and they represent the depth of potential and the radius of 

the molecule, respectively. Figure 2.1 shows the shape of the Lennard-Jones potential. 

 ε, σ and m of Lennard-Jones molecules can be non-dimensionalized so that it is possible to 

indicate the generality, independently of the kind of materials. In chapter 3, I discuss and verify the 

non-dimensionalized generality. The equations of dimensionless temperature and density are described by  

m

3

* ρ σρ =  , (2.13) 

ε
TkT B=*  (2.14) 

where m and kB are mass and the Boltzmann constant, respectively. The parameters employed in this study 

are shown in Table 2.2. By equation (2.12), the Lennard-Jones potential is in inverse proportion to six 

times the molecular distance, so it decreases. On the other hand, a molecule from the distance r to r+∆r, 

which is existed in a sphere, is proportional to the r square in a case of isotropic system. Therefore, the 

sum of the force by Lennard-Jones potential converges with an increase in distance. It is necessary to 

determine the cut-off distance rc for the Lennard-Jones potential for load reduction of calculation, so if the 

atom is out of rc then it is not included in the force calculation. 

 The error of the calculation would be increased due to the cut-off distance, so it is usually set up 

2.5σ – 5.5σ for consideration of practical condition such as calculation time. In this study, I set up the 

cut-off distance ranging 3.0σ -3.5σ, and nullify the force of distant atom.  

Table 2.2 Parameters of Lennard-Joned fluid 

 ε (meV) σ (Å) 

C – C 2.12 3.37 

Ar – Ar 10.33 3.40 

H2 – H2 3.18 2.93 

N2 – N2 8.54 3.59 

Ar – C 4.67 3.38 

H2 – C 2.59 3.15 

N2 – C 4.25 3.48 

 

0 σ 21/6σ 2σ

-ε

r

φ

 
Figure 2.1 Lennard-Jones potential. 
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2.3 Temperature calculation and control 
 The temperature of molecules defined in a system firstly requires that a sum of kinetic energy is 

obtained 

∑=
i

iik vmE 2

2
1

 (2.15) 

And, Ek which is proportional to T is defined as 

kB
f ETk

v
=

2
 (2.16) 

where kB=1.380662x10-23 J/K is Boltzmann constant, and vf is degree of freedom. Because one atom has 3 

degree of freedom, its value is 3 times the number of atoms. The temperature calculation in the simulation 

is employed for carbon atoms which consist of SWNT and Lennard-Jones molecules. 

 On the other hand, the velocity scaling method was used to control temperature which is 

commonly used in molecular dynamics simulations. By controlling the velocity of each molecule, the 

objective temperature was obtained. 

T
Trr Tvv c o n t r o l)1(' −+

×=  (2.17) 

where v’, v, r, Tcontrol and T are the velocity controlled, velocity of molecule, parameter to decide degree of 

strength, temperature before control and objective temperature, respectively. As using pulse-type heating to 

measure thermal conductance, I employed r=0.6 to avoid the unnaturally made system by drastic 

temperature control. 
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2.4 Numerical integration 
 Molecular dynamics simulation assumes a potential energy function depending on the position of 

each molecule and defines a potential energy E of the entire system as a sum of the energy of the atoms, 

and treats the movement of each molecule as the motion of a particle following the Newton’s law of 

motion. The law of motion for molecule i is defined as 

td
rdm

r
EF i

i
i

i 2

2

=
∂
∂

−=  (2.18) 

A difference expansion takes the Verlet method [29] which approximates to the second term of Taylor 

expansion. The algorithm of the Verlet method is below.  

 As the finite time ∆t approximates second-order derivative of Newton’s law of motion to the 

centeral difference of the second-order precision, it becomes 

i

i
iii m

tFtttrtrttr )()()()(2)( 2∆+∆−−=∆+  (2.19) 

Velocity is obtained by the equation that approximates differential of position of time as the centeral 

difference. 

( ) ( ){ }ttrttr
t

tv iii ∆−−∆+
∆

=
2
1)(  (2.20) 

It is able to trace the position of material point by a given initial value ri(0) and ri(∆t), which is the 

algorithm of Verlet method. Not only that, but with given initial condition of the position of material point 

ri(0) and velocity vi(0), it is possible to begin simulation. By eliminating ri(t-∆t) from the Equation (2.19) 

and (2.20), 

i

i
iii m

tFttt vtrttr
2

)()()()()( 2∆+∆+=∆+  (2.21) 

Once t =0, ri(∆t) is obtained.  

 The main step of calculation algorithm is below. 

1. Give initial position ri(0) and vi(0) 

2. Calculate ri(∆t) 

3. Calculate the force Fi(n∆t) at time step n. 

4. Calculate ri((n+1) ∆t) at time step (n+1)  

5. Repeat from the step 3 with (n+1) as n 

 One of characteristic of the Verlet algorithm is that it replaces the material point without velocity 

except setting up initial condition, so that it is impossible to apply velocity scaling method. Velocity is 

obtained by the equation (2.20), but as the equation is calculates the difference of position of finite time 

interval, one must be cautious about the cancellation of significant digits. 

 In this study, the modified Verlet algorithm which improves the Verlet algorithm in order to 

evaluate velocity and position at same time steps is employed. By the Taylor series expansion, position of 

material point and velocity is nullified, and first-order differential is approximated with a forward finite 
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difference. The following equation is obtained. 

( ) ( )
m
tFtvttrttr i

iii 2
)()( 2∆+⋅∆+=∆+  (2.22) 

( ) ( ) ( ) ( ){ }tFttF
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∆
+=∆+

2
 (2.23) 

 The main step of calculation algorithm is below. 

1. Give initial position ri(0) and vi(0) 

2. Calculate force Fi(0) 

3. Calculate ri((n+1)∆t) at time step (n+1) 

4. Calculate Fi((n+1)∆t) at time step (n+1) 

5. Calculate vi((n+1)∆t) at time step (n+1) 

6. Repeat from the step 3 with (n+1) as n 

 Using the above modified Verlet algorithm restrained the problem by tracing the motion of 

material point with velocity such as the cancellation of significant digits mentioned with the equation 

(2.20). 
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2.5 Time step 
 There are two kind of error by differentiating. One of them is local error which is generated 

during each step of calculation. Another is accumulated error which is accumulated by local error during 

all steps (proportional to 1/∆t), so it depends on all steps. Therefore, it is hard to simply say that that 

shorter ∆t is always better. Considering time scale in the simulation, which is proportional to ∆t, and the 

possibility to generate error by the cancellation of significant digits, ∆t needed to be decided as long as 

possible in the range satisfying the law of energy conservation. When potential is described ε ⋅Φ(r/σ) by 

the scale of energy ε and length σ, the 1-dimensional equation of motion is described as  

( )
2

2/
d t

rdm
r
r

=
∂

Φ∂
−

σε  (2.24) 

using dimensionless distance r'=r/σ and t'=t/τI, 

( )
2

2

2

2

'
'

'
'

d t
rdm

r
r

Iε τ
σ

=
∂
Φ∂
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Comparing the order to differentiated term of both sides as 1, 

12

2

=
I

m
ετ

σ
, εστ /2mI =  (2.26) 

By above, time scale difference τI is obtained. Because τI is needed as a order of time of length σ moving 

at r'=1, ∆t should be set up that there is not generated difference to τI. In this study, τI is 20 fs by 

ε=Re=6.325 eV and σ=De=1.315 Å. In addition, ∆t should be set up much less than thermal periodic 

frequency.  Vibration frequency of carbon-carbon bond is about 1800 cm-1 (5.4×1013 Hz), so vibration 

period becomes 2×1014 seconds. Therefore, ∆t should be the order of 10-16. Considering above, I employed 

here ∆t=0.5 fs.  
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2.6 Periodic boundary condition 
 Once you consider properties of materials, at least more than 1023 molecules are needed to 

possess macro properties of materials. However, it is not practically possible to simulate such a system, so 

it is necessary to set up boundary conditions in that some of the molecules are placed in a cube as a unit 

cell. If I simulate the inside properties out of the influence of surface, I have to consider how many 

molecules are needed to nullify the effect of the surface because the properties of surface and inside the 

bulk are different. By using periodic boundary conditions, it is possible that fewer molecules than 1023 

molecules can represent the bulk properties away from the influence of surfaces compared to macro-scale 

systems. All the regions next to calculation region, which are completely the same as the calculation region, 

are placed as image cells with periodic boundary conditions (Figure 2.2 shows the case of 2-dimensional 

plane). 

 A molecule which is goes out of one side of the calculation region comes in again from the 

opposite side, and the effect of force of the molecules from the image cell is considered. By the above 

considerations, I can suppose the system is as a bulk state of unlimited arrays of system nullifying surface 

effects. When the force added to molecule i is calculated, the force by molecule j which is from far away is 

nullified to reduce the calculation time and to realize the isotropy. The force by the targeted molecule is 

employed the only from the molecule which is placed in a cube with a length lv of a side in calculation 

region. If the component of a position vector of molecule j which is influenced by molecule i is longer than 

lv/2, then it is represented by translating lv. Figure 2.2 shows that the molecule j which influences to 

molecule i and the molecules i which influences to molecule j plays as a molecule j' and a molecule i' in 

the image cell, respectively.  

 For the cut-off distance defined by the cut-off function such as the Brenner potential, it is fine if 

lv is taken 2 times more than the distance.  

 In the isotropic system, because a molecule from the distance r to r+∆r, which exists in a 
sphere, is proportional to the r square in a case of isotropic system, if the interaction between 

molecules decreased more than r-3, it would be fine. However, if the interaction between molecules by such 

as the Coulomb force is proportion to less than r-3, the cut-off distance has to be carefully considered. 

 

 
Figure 2.2 Periodic boundary condition. 
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Chapter 3 
 

Thermal Boundary Conductance between Single-walled 

 Carbon Nanotube and Surrounding Fluids 
 

 

 

3.1 Guidelines  
 
 In this study, I calculate thermal boundary conductance K between a single-walled carbon 

nanotube (SWNT) and Lennard-Jones (LJ) molecules as a targeted surrounding fluids using non-stationary 

molecular dynamics simulation. 

 Chapter 3.2 indicates calculated results that thermal boundary conductance depends on the 

dimensionless density of surrounding fluids. Here, I employed the Lennard-Jones potential, which is able 

for each physical property to be non-dimensionalized. 

 In chapter 3.3, the thermal boundary conductance of SWNT was normalized in some degree by 

adsorption layer on the outer surface of an SWNT and parameters of surrounding fluids. Through above 

studies, I obtained a phenomenological description of the thermal boundary conductance between an 

SWNT and the surrounding LJ fluid. 
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3.2 Thermal boundary conductance between SWNT-Lennard-Jones molecules 
 

3.2.1 Simulation method  

 A 25.1 nm long SWNT consisting of 2000 carbon atoms was placed in the center of a cubic cell 

and surrounded by a fluid of 1280 molecules, as seen in Fig. 1. The primary aim here is to identify the 

general scaling law of thermal boundary conductance K between the SWNT and surrounding fluids. 

Therefore, I simulate the SWNT and surrounding Lennard-Jones (LJ) fluid group—such as argon, 

hydrogen, and nitrogen—as a target. Here, the diatomic molecule of hydrogen and nitrogen are regarded as 

a monoatomic molecule. To simplify phenomena, there are arranged one SWNT and LJ fluids in a 

supercritical state with various densities, which does not undergo a phase transition according to the 

Lennard-Jones molecules phase diagram shown in Fig. 3.2 [30]. The axes of density and temperature are 

non-dimensionalized as described in equations (2.13) and (2.14). 

m

3

* ρσρ =  (3.1) 

ε
TkT B=*  (3.2) 

The temperature T* of all simulations is between 3 and 4.5 in order to ensure that all the fluids are in a 

supercritical state. With that, I changed the density ρ* from 0.001 to 0.3 by adjusting the cross-sectional 

   

 
Figure 3.1 Initial arrangement of SWNT and surrounding LJ molecules. 
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size of the unit cell. Figure 3.3 shows snapshots of a wide density range in simulation. 

 I employed the Brenner potential [28] in a simplified form [31] to describe the carbon-carbon 

interactions within the SWNT as the total potential energy of the system, and for the interaction between 

carbon and the surrounding fluid, I adopted the 12-6 Lennard-Jones (LJ) potential based on Van der Waals 

forces between surrounding fluids molecules. Simulations were conducted for armchair SWNTs with 

chirality (5,5), which have a radius of 0.69 nm. The cross-sectional area of the simulation cell was varied 

from 2.3×2.3 nm to 46×46 nm, and periodic boundary conditions were applied in all directions. The space 

in which LJ molecules are arranged is only the space surrounding the SWNT, so that the density is 

represented as  

( ){ }4/4
fluidCzyx

Fluid

dlll
N

−+−
=

σπ
ρ  (3.3) 

where, Nfluid, lx, ly, lz, d and σC-Fluid are the number of fluid molecules, axial length representing the length 

of SWNT, two cross-sectional sides, diameter of SWNT and equilibrium distance between carbon and LJ 

fluid, respectively. 

 In each case, the first step was to keep the SWNT and surrounding fluid at a fixed temperature 

for 10 ps. The system was then relaxed for 990 ps without temperature control. After 1000 ps, the SWNT 

was heated instantaneously, and variations in the SWNT and surrounding fluid temperature were recorded. 

Values were ensemble-averaged from five individual simulations with different initial conditions. 

 

 

 

 

 

 
Figure 3.2 Lennard-Jones molecules phase diagram 
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Figure 3.3 Snapshots of simulations over a wide density range (0.001, 0.006, 0.02, 0.06, 0.1 and 0.3 

clockwise from upper left). 
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3.2.2 Lumped-Heat capacity  

 In the case of thermal transport between two different materials, one needs to calculate the 

temperature change in both materials, which can be complicated. However, if the ratio of thermal 

conductivity λ [W/mK] inside the materials and the thermal boundary conductance K [W/m2K] between 

the materials is quite small, then it is possible that the temperature gradient inside both materials is 

nullified and they have equivalent temperature distributions inside. In this way, I regard the material 

neglected volume as a thermal point, which simplifies investigation of the interfacial thermal transport 

property to an extremely simple equation. This is the Lumped-Heat capacity. 

 As the ratio of thermal conductivity and thermal conductance is non-dimensionlized, 

λ
KLBi =  (3.4) 

where Bi and L are the Biot number and a length of material, respectively. Once the Biot number is smaller 

than 0.01, the lumped-heat capacity can be employed neglecting temperature inside the material. Because a 

length L of some nanoscale materials ranges about 10-9, the Biot number is extremely small. Therefore, 

regarding a material as a thermal point with better precision is possible. 

 By applying the lumped-heat capacity to the system of calculation, it simply becomes that just 

two materials (hot and cold) are contacting. Using Newton’s law, heat flux q is defined as 
( )coldhot TTKSq −=  (3.5) 

where S is the contacted area between hot and cold materials. In addition, because the temperature of the 

material is also changed by thermal convection, equation (3.5) can be described as 

hothothot

hot

Vc
q

dt
dT

ρ
=  (3.6) 

coldcoldcold

cold

Vc
q

dt
dT

ρ
=  (3.7) 

Combining equations (3.6) and (3.7), the following relation can be deduced 

( ) ( )coldhot
coldcoldcoldhothothot

coldhot TTKS
VcVcdt
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coldhot ρρ
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The subscripts hot and cold refer to the SWNT and the surrounding LJ fluid, respectively.  
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3.2.3 Calculation of thermal boundary conductance 

 I calculated the thermal boundary conductance between a SWNT and surrounding LJ fluids 

employing the lumped-heat capacity. The right hand side of equation (3.9) is the temperature difference 

between the hot SWNT and the cold surrounding LJ fluid. Figure 3.4(a) shows the temperature profile of 

hot SWNT and cold surrounding LJ fluids, and Fig 3.4(b) shows their temperature difference fitted by an 

exponential function. As shown in Fig. 3.4 (b), due to the big oscillation generated by influence of the 

period of small temperature difference, I employed the least squares method to reduce the influence using 

the large period of temperature gradient from generating temperature difference. The approximated curve 

obtained by calculated results is represented by 

)exp(
τ
tATT coldhot −=−  (3.10) 

where A and τ are obtained from the calculation conditions. Combining equations (3.9) and (3.10), I obtain  
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A is the initial value of the temperature generated by heating, so it is not directly related to obtaining 

thermal conductance. Consequently, I obtain the equation of thermal boundary conductance as 

S
VcVc

K

coldcoldcoldhothothot

τ
ρρ 








+

=
11

1
 (3.12) 

The constants used in equation (3.12), which are invariant with calculation conditions, are shown in Table 

3.1. 

 Figure 3.5 shows the contacted area defined in this system, which is a cylindrical area of SWNT 

and surrounding LJ molecules. The diameter of the cylinder is defined as the sum of the diameter of the 
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Figure 3.4 (a) Temperature profile, and (b) temperature difference SWNT and argon ρ*=0.04. 
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SWNT and the potential parameter σC-fliud of the LJ potential, as follows,  

( ) SWNTfluidCSWNT ldS ⋅+= −σπ  (3.13) 

Through the above relation, the values of each thermal boundary conductance between SWNT and 

surrounding LJ fluids are arranged in Table 3.2 and Fig. 3.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

Figure 3.5 The contacted area S defined in the system. 

 
 

Table 3.1 Parameters used in the lumped-heat capacity. 

S [nm2] ρSWNTVSWNT [kg] cSWNT [J/K･kg ] ρLJVLJ [kg] cLJ [J/K･kg ] 

81.1 3.98 × 10-23 1039 
depends on the number 

of LJ molecules 
312 

 

d=dSWNT+σC-LJ 

σC-L

 



 
27 

 

 

10-3 10-2 10-1

10-1

100

101

ρ∗

K
 (M

W
/m

2 K
)

Hydrogen

Argon
Nitrogen

 
Figure 3.6 Thermal boundary conductance between SWNT and 

surrounding LJ fluids argon, nitrogen, and hydrogen. 

Table 3.2 Thermal boundary conductance K between SWNT and surrounding LJ fluids 

argon, nitrogen, and hydrogen. 

        K 

  ρ* 

Argon  

[MW/m2K] 

Nitrogen 

[MW/m2K] 

Hydrogen 

[MW/m2K] 

0.001 0.036 0.048 0.094 

0.002 0.076 0.084 0.163 

0.004 0.129 0.149 0.337 

0.006 0.181 0.217 0.522 

0.008 0.242 0.262 0.650 

0.01 0.355 0.313 1.005 

0.02 0.465 0.463 1.683 

0.04 0.661 0.808 3.237 

0.06 0.740 0.793 3.469 

0.08 0.791 0.887 3.927 

0.1 0.852 0.771 5.271 

0.2 1.057 1.089 4.985 

0.3 1.072 1.274 6.229 
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3.2.4 Dependence on dimensionless density of thermal boundary conductance 

 The thermal boundary conductance between SWNT and various surrounding LJ fluids was 

calculated over a wide density range. The density dependence of each fluid is shown in Fig. 3.6. Note that 

the data are plotted on a log-log scale. Hydrogen was found to have a higher thermal boundary 

conductance than other fluids for all calculated densities, whereas nitrogen and argon have almost the same 

thermal boundary conductance values, ranging from 0.037 to 1.274 MW/m2K. I found that the density 

dependence of the thermal boundary conductance of each fluid is almost linear for dimensionless densities 

less than 0.04, but becomes non-linear above 0.04 even though each simulation was performed in a 

supercritical state, thus does not undergo a phase transition. 
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3.3. Normalization of Thermal Boundary Conductance between SWNT and 
Lennard-Jones molecules 

 

3.3.1 Adsorption layer on the outer surface of SWNT 

 Looking at the results from another perspective, I also considered the local density ρL, which is 

the density of molecules in the first layer surrounding the SWNT as seen in Fig. 3.7. For this, I have 

calculated the radial distribution function which verifies by counting the number of surrounding LJ 

molecules from the origin of SWNT axis to radial direction. The value of most molecules is here treated as 

the local density ρL. 

 Figure 3.8(a) shows the local density of argon on the outer surface of SWNT, and that at higher 

ρ* for 30 ps after heating the SWNT is correlated to higher local density. This tends to converge with 

respect to increasing dimensionless density, as seen in Fig. 3.8(b). As seen in Fig. 3.8(c)-(d) and (e)-(f), 

other cases of nitrogen and hydrogen have the same tendency as argon. Here, the local density of the radial 

distribution function mentioned is the density of the number of surrounding LJ molecules, not their mass. 

Both the initial and maximum values of the local density, determined radially from this SWNT axis, 

depend on the value of the equilibrium distance σ of the carbon-surrounding molecule interaction found in 

Table 3.3. In addition, Figure 3.9 shows that the local density of each fluid is almost proportional to the 

dimensionless density.  

 

  
Figure 3.7 the first adsorption layer of surrounding molecules on the outer surface of SWNT. 

Table 3.3 Parameters of Lennard-Jones fluid. 

 C – C Ar – Ar H2 – H2 N2 – N2 Ar – C H2 – C N2 – C 

ε (meV) 2.12 10.33 3.18 8.54 4.67 2.59 4.25 
σ (Å) 3.37 3.40 2.93 3.59 3.38 3.15 3.48 

 

1st adsorption layer SWNT 
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 I also investigated the influence of the second adsorption layer shown at higher ρ* the outer layer, 

which is placed on the front and the rear of the distance from SWNT axis as seen in Fig. 3.8 (a), (c) and (e). 

The molecules exhibited no noticeable ordering beyond the second layer, and there was minor difference 

found by changing either the cell size or by increasing the number of fluid molecules, even if the 

contribution from the SWNT was ignored in determining the density. This shows that there was little 

influence of the second and outer layers on determining the thermal boundary conductance. 
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 Consequently, thermal boundary conductance depends on the local density of each fluid as 

seen in Fig. 3.9. The thermal boundary conductance is linearly proportional to ρL, and the hydrogen case is 

found to be much more sensitive to local density than argon or nitrogen. Comparing Figs. 3.8 and 3.9, I 

found that other factors must determine the thermal boundary conductance, because each fluid with the 

same local density had a different value of thermal boundary conductance. Therefore, I considered the 
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Figure 3.8 (a), (c) and (e) are radial distribution function of the fluids, argon, hydrogen and nitrogen, 
respectively. (b), (d) and (f) are relation between dimensionless density ρ* and the local density ρL 
of each fulid. 
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other factors to determine the thermal boundary conductance, such as the parameters of each 

Lennard-Jones fluid. 
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Figure 3.9 Thermal boundary conductance dependence on the local density of each fluid. 
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3.3.2 Fluid effect of thermal boundary conductance 

 The parameters used in these simulations were binding energy, equilibrium distance, and mass, 

as shown in Tables 3.3 and 3.4. For nitrogen and hydrogen regarded as monoatomic molecules in this study, 

it was necessary to define the boundary parameters between the SWNT and the surrounding LJ fluid. 

These parameters were determined by the Lorentz-Berthelot mixing rules as  

2
fluidLJC

fluidLJC

σσ
σ

+
=−  (3.14) 

( ) 2
1

fluidLJCfluidLJC εεε ⋅=−  (3.15) 

where σC-LJ fluid and εC-LJ fluid are equilibrium distance and binding energy on the interfacial surface between 

SWNT surrounding LJ fluid, respectively.  

 In order to determine the effect of each parameter on the thermal boundary conductance, I 

assumed hypothetical fluids and used parameters of argon as standard values. Each parameter was varied 

while keeping the other two constant, and all cases were performed with ρ*=0.04 

 Firstly, Figure 3.10(a) shows that the binding energy ε is proportional to thermal boundary 

conductance. In these five cases, as seen in Fig. 3.10(a), the thermal boundary conductance increases from 

0.186 to 0.537 MW/m2K as binding energy ε increases from 3.18 to 10.34 meV. The dependence on 

binding energy ε was approximated by the equation K∝ε-0.9
. In addition, as seen in Fig. 3.10(b), there is a 

minor difference of local density in the changes of the binding energy ε. 

 Secondly, I investigated the equilibrium distance σ. As seen in Fig. 3.10 (c), the change in 

thermal boundary conductance, which ranges from 0.54 to 0.72 MW/m2K, is smaller than in the case of 

binding energy (Fig. 3.10(a)). The dependence on equilibrium distance σ was approximated by the 

equation K∝σ--1.34. Additionally, Figure 3.10 (d) shows that—as with the binding energy ε—there is also a 

minor difference of local density in the changes of the equilibrium distance σ. 

 Lastly, I evaluated the mass. As above, all parameters except mass used the values of argon. As 

seen in Fig. 3.10(e), I found by comparing to above two cases that the thermal boundary conductance 

increased exponentially from 2.12 to 4.93 MW/m2K with decreasing mass from 131.3 to 2.02 amu. The 

mass dependence was approximated by the equation K∝m-0.76. Moreover, I investigated the relation 

between local density and the effect of mass, as seen in Fig. 3.10(f). Even though every hypothetical fluid 

has almost the same local density, the TBC is totally different. 

Each parameter I employed in the study of the parameter effect is individually distributed in a different 

range. The maximized and minimized values of binding energy ε and equilibrium distance σ are ranging 

from the value of hydrogen and of argon. Mass values range from that of hydrogen to xenon. I found the 

Table 3.4 Mass of Lennard-Jones fluids molecule. 

 Carbon Argon Hydrogen Nitrogen 

m (amu) 12.01 39.95 2.02 28.01 
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reason why hydrogen cases have a higher thermal boundary conductance than other fluids through the 

above effect of each parameter. 
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Figure 3.10 The effect of each parameter, (a) binding energy ε, (c) equilibrium distance σ and (e) 
mass m on determining the thermal boundary conductance. In addition, (b), (d), and (e) indicate 
that each parameter is independent on local density. All cases are performed in ρ*=0.04. 
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3.3.3 Generalized equation for TBC 

Through the above parametric studies, I obtained a phenomenological description of the thermal 

boundary conductance between an SWNT and a surrounding LJ fluid. This is described by 

m
aK L

model
ερ ⋅

⋅=
 (3.16) 

where a is equal to 1.67×10-23 kg nm-3s-1K-1. The effects of binding energy and mass of thermal boundary 

conductance are simplified from the approximated relations ε0.9 and m-0.76, as seen in Fig. 3.11. Here, I 

omitted the equilibrium distance σ from the equation because of recognition that there is little difference 

between the maximized and minimized equilibrium distance σ of the fluids. 

I verified the accuracy of the equation by comparing values of the thermal boundary conductance 

obtained using equation (3.16) with those obtained from MD simulation (Fig. 3.12). Note that the data are 

plotted on a log-log scale.  
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Figure 3.11 Influence of the fluid parameters; (a) binding energy ε, and (b) mass m on the thermal 
boundary conductance. 

10-2 10-1 100 10110-2

10-1

100

101

Argon

Hydrogen
Nitrogen

KMD

K
m

od
el

 
(M

W
/m

2 K
 )

(MW/m2K )  
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4.1 Interfacial energy transfer between SWNT and surrounding LJ fluid 
 

4.1.1 Interaction change by temperature between SWNT and surrounding LJ fluid  

 This study aims to clarify the mechanism of interfacial energy transfer. In particular, it is 

the most important to setup the state of interface in simulation. As mentioned in chapter 3.3, they are 

parameters such as the binding energy ε and equilibrium distance σ are determined by the 

Lorentz-Berthelot mixing rule usually used in MD simulation. This is described as 

2
fluidLJC

fluidLJC

σσ
σ

+
=−  (4.1) 

( ) 2
1

fluidLJCfluidLJC εεε ⋅=−  (4.2) 

There is minor difference between the equilibrium distance σ of extant Lennard-Jones fluids, so that I need 

not to be necessarily concerned by that about the influence to thermal boundary conductance. For the case 

of the binding energy ε, however, it influences directly to the thermal boundary conductance K, and that is 

why I need to determine that considerably. Once I make use of the Lorentz-Berthelot mixing rule defined 

in equations (4.1) and (4.2), the determined interfacial binding energy ε would be changed by the kind of 

LJ fluid which is surrounding the SWNT. Then it is hard to estimate which of the binding energies between 

the interface and fluid itself influences the interaction between SWNT and surrounding LJ fluid. Therefore, 

I assumed hypothetical fluids and used parameters of argon as standard values. The binding energy ε was 

varied from 0.5 to 10 times to the value determined by the Lorentz-Berthelot mixing rule, and all cases 

were performed with ρ*=0.04. Here, the energy transfer is dependent on the binding energy ε so I 

investigated two cases, one of which has change of temperature corresponding to the binding energy ε, and 

the other which has constant temperature at the interface. Consequently, thermal boundary conductance of 

both cases is increased with increasing the interfacial binding energy, as shown in Fig. 4.1. Note that the 

horizontal axis indicates the multiple of the binding 

energy determined by the Lorentz-Berthelot mixing 

rule, and the vertical axis is the ratio of thermal 

boundary conductance to that of standard value. As 

shown in Fig. 4.1, the interfacial binding energy 

becomes nonlinear when T is unchanged, indicating 

K is sensitive to the temperature. 
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Figure 4.1 Ratio of thermal boundary conductance 
K to interfacial binding energy when temperature 
is changed vs. unchanged. 
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4.1.2 Thermal boundary conductance change by increase of temperature  

 Dimensionless temperature was defined in equation (3.2) and used for comparing different 

Lennard-Jones fluids, as follows  

ε
TkT B=*  (4.3) 

All cases have been so far simulated with the dimensionless temperature changes from 3.0 to 4.5. The 

binding energy of LJ fluids depends on temperature, so it is meaningless to compare different LJ fluids 

using absolute temperature; this is why it is necessary to employ dimensionless density. T*=3.0 of argon, 

nitrogen, and hydrogen are corresponding to T=162.58 K, 147.82 K, and 96.11 K, respectively. In addition, 

T*=4.5 correspond to T=243.87, 221.73, and 144.17 K, respectively. Here, all cases are above T*=3.0 in 

order to ensure that all the fluids are in a supercritical state without phase transition [30].  

 It is, however, hard to find the temperature influence of SWNT to surrounding LJ fluid as a 

fixing dimensionless temperature change from T*=3.0 to 4.5. Therefore, I investigated the influence of 

dimensionless temperature to thermal boundary conductance by changing the dimensionless temperature of 

the SWNT up to 7.0 and 12.0, which correspond to 372.4 and 638.2 K of argon, respectively, as shown in 

Fig. 4.2(a).  

 Relaxation time decreased by increasing dimensionless temperature as seen in Fig. 4.2(b). 

Furthermore, Fig. 4.3(a) shows the distribution of the first layer of the above cases that the SWNT of the 

highest dimensionless temperature has the lowest density of the first layer, and that of the lowest 

dimensionless temperature has the highest density of it. I regard these as the desorption phenomenon on 

the surface of material. The general equation for the rate of desorption is defined as 
xrNR =  (4.4) 

where r is the rate constant for desorption, N is the concentration of the adsorbed material, and x is the 

0 10 20 30

200

400

600
T*=12

T*=7

T*=4.5

Time (ns)

Te
m

pe
ra

tu
re

 (K
)

(a)

0 10 20 30

0

200

400
T*=12

T*=7

T*=4.5

Time (ns)

Te
m

pe
ra

tu
re

 D
iff

er
en

ce
(K

)

(b)

 
Figure 4.2 (a) Temperature profiles of, and (b) temperature differences between SWNT and argon ρ*=0.04 
for different dimensionless temperatures.  
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kinetic order of desorption. Usually, the order of the desorption can be predicted by the number of 

elementary steps, and the rate constant r may be expressed in the form 
TkE BaAer /−=  (4.5) 

where A is the chance of the adsorbed molecule overcoming its potential barrier to desorption, Ea is the 

activation energy of desorption, kB is the Boltzmann constant, and T is the temperature.  

 Consequently, thermal boundary conductance between SWNT and surrounding LJ fluid was 

increased by dimensionless temperature changes, as seen in Fig. 4.3(b). In the case T>1000 K of SWNT, 

which is corresponding to T*>18.5, the SWNT becomes unstable, so I limited the dimensionless 

temperature up to T*=12.0. 
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Figure 4.3 (a) Radial distribution functions of the first adsorption layer and (b) thermal boundary 
conductance K values for different dimensionless temperatures. 
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4.1.3 Residence time on the outer surface of SWNT 

 In section 4.1.2, I show that thermal boundary conductance depends on the temperature. This 

tells us that temperature affects to energy transfer on the interface between SWNT and surrounding LJ 

fluid. Due to this, I investigate the change of energy transfer due to temperature. Before the evaluation, I 

have to define the concept of residence time, which is when a molecule comes into the first adsorption 

layer, and stays for a moment, and then leaves. The length of time a molecule exists in the adsorption layer 

is the residence time of a molecule on the surface of SWNT. To decide the first adsorption layer, the 

thickness and the distance of absorbed molecules from the SWNT have to be considered. Figure 4.4 shows 

the radial distribution function for a SWNT with chirality (5,5). It has a first adsorption layer with 5 Å 

thickness, and the value of peak is at 7.0 Å from the axis of SWNT. For this case, the point at 9.5 Å, where 

the thickness almost decreased, is defined as the boundary of the first adsorption layer. 

 Moreover, for using residence time to evaluate energy transfer, a start point and end point must 

be determined. Although molecules can stay on the surface for about 200 ps, if I decide the observation 

time is less than that it becomes hard to analyze energy transfer by the perspective of using residence time. 

Hence, it is necessary to decide the proper observation time through many times of simulations.  

 There are two special cases of molecules, one that was present before the beginning of 

observation and one that will remain after the end of observation. Both are not included in the calculation 

of residence time of molecules. Figure 4.5 shows that a molecule comes from somewhere in space into the 

adsorption layer at 144.5 ps and goes out at 178.5 ps, hence the residence time is determined as 34.0 ps. In 

this way, the residence times of the three cases where dimensionless temperature changed from T*=3.0 to 

4.5, 7.0, and 12.0 in section 4.1.2 are 92.38, 43.54, and 16.22 ps, respectively. Observation times of the 

above are determined from 1100 to 1300 ps because this was considered as the time of the most active 

moment for energy transfer. I found that residence time decreased with the increase of thermal boundary 

conductance and dimensionless temperature. However, it is hard to simply conclude that short residence 
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Figure 4.4 Definition of the first adsorption layer. 
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time make thermal boundary conductance high because the energy transfer with respect to residence time 

is not yet understood.  

 
Figure 4.5 Snapshots of residence time in the first adsorption layer around a SWNT. 
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4.1.4 Energy balance between energy change of all argon and that of the interface 

 

 In order to evaluate energy transfer by residence time of molecules, it is necessary to consider 

the energy balance between energy change of all molecules in the surrounding fluid and that of the 

interface. To define the temperature of molecules in a system, one firstly needs to obtain a sum of kinetic 

energy  

∑=
i

iik vmE 2

2
1

 (4.6) 

Ek, which is proportional to T, is defined as  

kB
f ETk

v
=

2
 (4.7) 

where kB=1.380662x10-23 J/K is the Boltzmann constant, and vf is the number of degrees of freedom. Each 

atom has 3 degrees of freedom. 

 In sections 4.1.1 to 4.1.3, thermal boundary conductance has been changed by the change of 

interfacial temperature, so evaluating the energy balance between entire and interfacial molecules could be 

the standard of energy transfer, and could be extended to evaluate energy transfer by residence time.  

 In evaluating energy balance, there are more cases than what I considered about residence time 

in section 4.1.3. First, there have been molecules staying on the surface since before the beginning of 

observation. The initial energy Ei,in of the molecule i is determined at the moment of beginning observation. 

Second, the ith molecule coming into the first adsorption layer during observation has initial energy Ei,in. 

Third, some molecules will stay until the end of observation time, and they have energy Ei,out determined at 

the final moment of observation. Lastly, during observation, an outgoing molecule i has energy Ei,out at the 

moment it leaves. Molecules in the first adsorption layer take balance between adsorption and desorption, 

even at the beginning and end moments during observation. So, I took ∆Ei = Ei,out-Ei,in as the energy 
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Figure 4.6 Effect of dimensionless temperature on the energy balance between 

energy transfer of the entire fluid and by the interfacial molecules. 
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transfer. 

 Figure 4.6 shows energy balance between energy transfer of all molecules and the interfacial 

molecules at 9.5 Å from the SWNT axis, as seen in Fig. 4.5. In this case a SWNT with chirality (5,5) and 

diameter 0.69 nm. The result shows energy balances of 3.4/3.42 (99.4%), 9.29/10.9 (85%), and 21.4/25.6 

(83.6%) when T* was changed from 3.0 to 4.5, then to 7.0, and finally to 12.0. Therefore, I can conclude 

that interfacial energy transfer is the dominant energy transfer process in the entire fluid.  
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4.1.5 Distribution of interfacial transfer by changing SWNT temperature 

 

 Energy balance which indicates that interfacial energy transfer accounts for nearly all energy 

transfer of entire molecules was ensured in section 4.1.4, so I investigate difference of energy transfer 

using residence time of molecules by different heating temperature. In this study, I decide the observation 

time from 1100 to 1300 ps for the most active moment for energy transfer.  

 Figure 4.7 shows the distribution of molecules per residence time, which is shown as a percent of 

energy transfer because the number of residence molecules is not uniform for all cases during the 

observation. Heating the SWNT from T*=3.0 up to T*=4.5 is shown in Fig. 4.7(a), and there are 1140 

molecules that enter and leave the first adsorption layer. Figure 4.7(b) shows the case of heating the SWNT 

up to T*=7.0, which has 1156 transiting molecules. Comparing to the above case of heating the SWNT up 

to T*=4.5, the distribution of molecules is increasing per shorter residence time and decreasing per longer 
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Figure 4.7 Percentage of molecules with different residence times. (a), (b), and (c) correspond 
to heating the SWNT to T*=4.5, 7.0, and 12.0, respectively. Increase of dimensionless 
temperature decreases the residence time. 
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residence time. Figure 4.7(c) shows the distribution of molecules per residence time. Most molecules have 

a short residence time, and fewer have a longer residence time than the both above cases. In addition, the 

possibility of a long residence time is decreasing with the increase of dimensionless temperature. 

 Figure 4.8 shows energy transfer per atom with respect to the residence time of molecules. Here, 

I found that energy transferred more during long residence time than short. Moreover, comparing Figs. 

4.8(a) and 4.8(b), the case of heating the SWNT up to T*=7.0 transferred more energy than heating to 

T*=4.5. The case of increasing dimensionless temperature up to T*=12.0, as seen in Fig. 4.8(c), shows that 

residence times are shorter than in the two cases of lower dimensionless temperature, and more energy was 

transferred. Furthermore, Figure 4.8, as mentioned in section 4.1.1, is about the influence of temperature 

on thermal boundary conductance and binding energy ε, so I can expect that the binding energy ε plays a 

role as a energy capacity of molecule. 

 The Maxwell–Boltzmann distribution describes particle speeds in gases, where the particles do 

not constantly interact with each other but move freely between short collisions. It describes the 

probability of a particle's speed (the magnitude of its velocity vector) being near a given value as a 
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Figure 4.8 Energy transfer per atom for different residence times. SWNT was heated to (a) 
T*=4.5, (b) 7.0, and (c) 12.0. 
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function of the temperature of the system, the mass of the particle, and that speed value. The 

Maxwell-Boltzmann distribution for the speed of molecule follows from the distribution of the velocity 

vector. Note that the speed is 

222
zyx vvvv ++=  (4.8) 

and the increment of volume is  

ϕθθ dddvvdvdvdv zyx sin2=  (4.9) 

where θ and ϕ are the course (azimuth of the velocity vector) and path angle (elevation angle of the 

velocity vector). Integration of the normal probability density function of the velocity over the course (0 to 

2π) and path angles (from -π/2 to π/2), with substitution of the speed for the sum of the squares of the 

vector components, yields the probability density function  
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Figure 4.9 Total energy transfer in the first adsorption layer. (a), (b), and (c) 
correspond to heating the SWNT to T*=4.5, 7.0, and 12.0, respectively. 
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for the speed. This equation is simply the Maxwell distribution with distribution parameter 

m
Tka B=  (4.11) 

where kB=1.380662x10-23 J/K is the Boltzmann constant, and m is the mass of a molecule. 

We are more interested in quantities such as the average speed of the particles rather than the actual 

distribution. The mean speed, most probable speed, and root-mean-square can be obtained from properties 

of the Maxwell distribution.  

 Figure 4.9 shows total energy transfer for each case of residence molecules during 200 ps from 

1100 to 1300 ps. This is simply the product of Fig. 4.7 (the number of residence molecules per residence 

time) and Fig. 4.8 (the energy transfer per atom and residence time). As seen in Fig 4.9(a), the energy 

transfer by the molecules with short residence time (from 0 to 20 ps) is negative, which means possibility 

that molecules exited with higher temperature than that of the SWNT. Figure 4.9(b) and (c) are the cases of 

heating the SWNT to T*=7.0 and 12.0, respectively. I found the elevation of temperature to influence 

energy transfer not only by decreasing the residence time per atom but also transferring more energy. Note 

that the molecules included in the calculation with residence time are only considered if they both come in 

and go out during the observation time.  
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4.2 Thermal boundary conductance of SWNTs with various diameters  
 

4.2.1 Distribution difference of 1st adsorption layer by diameter of SWNT 

 

 I have so far investigated SWNT with a chirality (5,5), which has diameter d=0.69 nm. Here, I 

extend to SWNTs of various diameters, and investigate the dependence on the diameter. For that, the first 

adsorption layer has to be investigated because it plays a crucial role for thermal transfer between the 

SWNT and the surrounding LJ fluid.  

 I simulated two cases of SWNT with chirality (5,5) and (10,10), which have corresponding 

diameters d=0.69 and 1.38 nm. However, the number of molecules and thickness of the first adsorption 

layer are different. Figure 4.10 shows a comparison of the first adsorption layers on SWNTs with diameters 

d=0.69 and 1.38 nm. First, the first adsorption layer contains 310 and 423 molecules for d=0.69 and 1.38 

nm SWNTs, respectively. The corresponding thicknesses are 3.5 and 1.5 Å, respectively. Through 

snapshots of simulations, I found the reason why each case has different thickness of the first adsorption 

layer as seen in Fig. 4.11. The SWNT with diameter d=0.69 nm is axially vibrating due to the interaction 

both to carbon and molecules of fluid, which has only 20 carbon atoms in the unit cell of SWNT. However, 

the SWNT of diameter d=1.38 nm is axially vibrating less than the SWNT of diameter d=0.69 nm, and that 

is why the thicknesses of the first adsorption layers are not equal. For the above reasons by comparison, it 

is hard to simply compare SWNTs with different diameter, and is necessary to consider the density of the 

first adsorption layer of SWNT to compare SWNTs which have different diameters. 

 

Table 4.1 Comparison between SWNTs of 
chiralities (5,5) and (10,10). 

Chirality of SWNT (5,5) (10,10) 

No. of carbon atoms 2000 4000 

No. of LJ molecules 1280 1280 

Diameter 0.69 nm 1.38 nm 

No. of molecules in  
1st adsorption layer 310 423 

Thickness of  
1st adsorption layer 3.5 Å 1.5 Å 
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Figure 4.10 comparison of the first adsorption layers 
around SWNTs with chiralities (5,5) and (10,10), 
which have corresponding diameters d=0.69 and 
1.38 nm. 
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Figure 4.11 Snapshots of SWNTs with chiralities (5,5) (left) and (10,10) (right). 
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4.2.2 Thermal boundary conductance of SWNTs with various diameters 

 

 In order to use SWNTs as thermal and electrical devices, they have to be controlled when they 

are synthesized. However, perfect control is not yet possible, so it is necessary to investigate SWNTs of 

different chirality with various diameters. Here, I studied the thermal boundary conductance of three 

different SWNTs with different diameters, considering the density of the first adsorption layer as 

mentioned in section 4.2.1. 

 Figure 4.12 shows a snapshot of SWNTs which have the chiralities (7,7), (12,12), and (18,18) 

corresponding to d=0.97, 1.66, and 2.5 nm, respectively. I considered the density of the first adsorption 

layer and indicate it shown in Table 4.2. The cross-sectional area of the simulation cell was 150.1×150.1 Å, 

and periodic boundary conditions were applied in all directions. Length of all SWNT were 25.1 nm, and 

the number of carbon atoms were 2800, 4800, and 7200 for diameters d=0.97, 1.66, and 2.5 nm, 

respectively. Densities of surrounding LJ molecules without absorbed molecules on the SWNT surface 

(ρ*free) were varied from 0.0064 to 0.0138. 

 Thermal boundary conductance increased with the increase in diameter, however, there is a 

minor difference between SWNT of d=1.66 and 2.5 nm. From that, I can conclude that thermal boundary 

conductance of SWNT with different diameters converges to some degree when the diameter becomes 

large, and it is possible to extend this for graphene, which is somewhat like a SWNT with d=∞. There are 

no reports of thermal conductance measurements between graphene and the LJ fluids used here, however 

this value has been measured for graphene and CO2 [32]. Although the systems are somewhat different, the 

reported value (corresponding to d=∞) is of the same order of magnitude as this calculation for a SWNT 

with diameter d=2.5 nm.  

 Although SWNT with different diameters are under the same density (ρ*free), they did not have 

same thermal boundary conductance. Therefore, I investigated the difference of energy transfer in three 

cases. Here, I expect that the thermal boundary conductances are different because of the curvature of 

Table 4.2 SWNTs with various diameters and their corresponding first adsorption layers  

Chirality No. of 
carbon atoms d (nm) No. of 

LJ molecules ρ*free 
No. of molecules 

in 1st adsorption layer 
K 

(MW/m2K) 

(7,7) 2800 0.97 
1000 0.0064 75 0.313 
1500 0.0097 93 0.358 
2000 0.0129 129 0.460 

(12,12) 4800 1.66 
1200 0.0073 157 0.430 
1700 0.0104 196 0.548 
2200 0.0134 270 0.743 

(18,18) 7200 2.5 
1400 0.0082 238 0.464 
1900 0.0113 286 0.581 
2400 0.0138 447 0.760 
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SWNTs with different diameters. This could determine the easiness to absorb on the surface of SWNT, 

thus influence to the energy transfer by residence time.  

 However, in order to apply the evaluation of energy transfer per residence time as discussed in 

section 4.1.4, energy balance must be ensured that interfacial energy transfer accounts for the majority of 

the energy transfer in the system for SWNT with various different diameters. Figure 4.14 shows the energy 

balance of SWNTs with diameters d=0.97, 1.66, and 2.5 nm, indicating it is fine to investigate energy 

transfer by the perspective of using residence time.  
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Figure 4.13 Diameter dependence of thermal boundary conductance for 
SWNTs under different densities (ρ*free). 

 
Figure 4.12 snapshots of SWNTs with chirality (7,7), (12,12), and (18,18) (from left), corresponding to diameters  

d=0.97, 1.66, and 2.5 nm, respectively. 
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Figure 4.14 Influence of SWNT diameter on energy balance. 
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4.2.3 Energy transfer of SWNTs with various diameters  

 
 Figure 4.15 shows that the number of molecules per residence time is dependent on diameter. 

First, residence times for SWNT of diameter d=0.97 nm tend to be shorter than other cases of SWNT with 

diameter d=1.66 and 2.5 nm. Distribution of residence time of SWNTs with diameter d=1.66 nm is a bit 

shorter than that for SWNTs with diameter d=2.5 nm, even though they are under almost the same density 

(ρ*free) and temperature, meaning the probability of adsorption on the surface of is essentially equal. 

Moreover, the number of molecules with short residence time on SWNTs with d=0.97 nm is higher than 

for SWNTs with diameter d=2.5 nm. Here, I conclude that molecules are more stable on a low-curvature 

surface, so they stay longer than on a high-curvature surface, and I expect that adsorption onto graphene is 

the most stable among the carbon network structures. 

 For energy transfer per atom and residence time by SWNT of different diameter, molecules with 

0

5

10

15

0

5

10

15

0 100 200
0

5

10

15

Pe
rc

en
t o

f G
as

 M
ol

ec
ul

es
 (%

)

Residence time  (ps)

(a)

(b)

(c)

Chirality (7,7)

Chirality (12,12)

Chirality (18,18)

(d=0.97 nm)

(d=1.66 nm)

(d=2.5 nm)

 
Figure 4.15 Percentage of molecules with different residence times. (a), (b), and (c) are SWNTs with 
diameters d=0.97, 1.66, and 2.5 nm, respectively. Increase of diameter increases the residence time. 
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long residence time transferred energy more than those with short residence time. Figure 4.16 (a) shows 

the distribution of energy transfer per atom of SWNT diameter d=0.97 nm. Comparing to two other cases, 

the energy transfer tends to be mainly distributed around less than 100 ps. As shown in Fig. 4.16(b), energy 

per atom of SWNT with diameter d=1.66 nm was transferred more frequently between 80 and 100 ps than 

that with d=0.97 nm. Lastly, that of SWNT with d=2.5 nm transferred energy per atom more than over 100 

ps. From the above, I can conclude that molecules with long residence time transfer more energy than 

those with short residence time.  

 Figure 4.17 shows total energy transfer per residence time during 200 ps from1100 to1300 ps. 

The meaning of total energy transfer is the number of residence molecules per residence time multiplied by 

the energy transfer per atom and residence time. I found the molecules that had higher speed than SWNT 

had residence times of 0 to 20 ps for all cases. Figure 4.17(a) shows for diameter d=0.97 nm that total 

energy per residence time was transferred little for residence times longer than 100 ps. For SWNT with 

diameter d=1.66 nm energy is transferred quite actively from 0 to 100 ps comparing to the d=0.97 nm case, 

as shown in Fig. 4.17(b). From Fig. 4.17(c), I found that the residence time is longer on SWNT with large 
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Figure 4.16 Energy transfer of atoms having different residence times. (a), (b), and (c) 
correspond to SWNTs with different diameters d=0.97, 1.66, and 2.5, respectively. 
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diameters, and eventually, more energy at the interface between SWNT and surrounding LJ fluid was 

transferred. 
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Figure 4.17 Total energy transfer in the first adsorption layer around SWNTs with 
diameters d= (a) 0.97, (b) 1.66, and (c) 2.5 nm. 
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 The thermal boundary conductance K between a single-walled carbon nanotube (SWNT) and 

various surrounding Lennard-Jones (LJ) fluids was investigated using non-stationary molecular dynamics 

simulations. I found that the density dependence on thermal boundary conductance relies on the local 

density of the molecules in the first adsorption layer, and there is little effect from outer layers. The 

hydrogen case is found to be much more sensitive to the local density than argon or nitrogen. For 

analyzing thermal boundary conductance, however, I needed to consider parameters of the surrounding 

fluid as well as the density dependence on thermal boundary conductance. 
 The molecular mass influences the thermal boundary conductance far more than other fluid 

parameters (i.e., binding energy and equilibrium distance), and the thermal boundary conductance 

increased exponentially with decreasing mass. For hypothetical fluids, where the mass was artificially 

changed, the thermal boundary conductance was found to be independent of local density. Furthermore, the 

local density and the mass of the LJ fluid have the most influence on the value for determining the thermal 

boundary conductance. Through the above studies, I obtained a phenomenological description of the 

thermal boundary conductance between a SWNT and a surrounding fluid and verified the accuracy of the 

equation. 

 I found that interfacial energy transfer accounts for the majority of the energy transfer occurring 

within the system, and an increase in temperature tends to increase the rate of energy transfer. This is why 

the thermal boundary conductance increases with temperature. In addition, the residence time of molecules 

on surfaces of SWNTs at high temperature was short, but the energy transfer was effective.  

 SWNTs with various diameters were simulated in order to verify the difference in thermal 

boundary conductance and energy transfer with respect to diameter under the same surrounding pressure. I 

found that the thermal boundary conductance is higher for large diameter SWNTs, but it is not simply 

proportional to diameter; I expect the value at larger diameters converges to that of graphene. I also found 

that surrounding LJ molecules could easily reside on the surface of SWNTs that have larger diameters 

because of the low-curvature of the surface. This leads to more transfer of energy than on SWNTs with 

highly curved surfaces. 
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