<u>卒業論文</u>

FT-ICR によるナノチューブ

前駆体クラスターの分析

<u>1-80 ページ 完</u>

<u> 平成 14 年 2 月 8 日 提出</u>

指導教官 丸山 茂夫 助教授

00241 広川 文仁

目次

第1章 序論

- 1-1 はじめに
- 1-1-1 クラスター
- 1-2 フラーレンとナノチューブ
 - 1-2-1 フラーレンの発見と大量合成
 - 1-2-2 フラーレンの生成方法
 - 1-2-3 メタルフラーレン
 - 1-2-4 ナノチューブの発見
 - 1-2-5 ナノチューブの構造
 - 1-2-6 ナノチューブと触媒
 - 1-2-7 フラーレン,ナノチューブの応用
 - 1-2-8 応用化への取り組みと課題
- **1-3** 本研究の目的

第2章 原理

- 2-1 FT-ICR 質量分析の原理
 - 2-1-1 基本原理
 - 2-1-2 サイクロトロン運動の励起(excitation)
 - 2-1-3 イオンの閉じこめ(trap)
- 2-2 励起と検出
 - 2-2-1 離散フーリエ変換
 - 2-2-2 SWIFT による励起
 - 2-2-3 検出波形と時間刻み
- 2-2-4 実際の流れ
- 2-3 質量選別

第3章 実験装置と方法

- 3-1 FT-ICR 質量分析装置
 - 3-1-1 実験装置概要
 - 3-1-2 超音速クラスタービームソース
 - 3-1-3 ICR セル部
 - 3-1-4 6Tesla 超伝導磁石
 - 3-1-5 光学系
- 3-1-6 制御・計測システム
- 3-2 実験手順

第4章 結果と考察

- 4-1 実験の概要
 - 4-1-1 実験パラメーター

4-1-2 実験試料

4-2 実験結果·考察

- 4-2-1 純炭素試料からの生成クラスター
- 4-2-2 Ni/Co/C 試料からの生成クラスター
- 4-2-3 Rh/Pd/C 試料からの生成クラスター
- 4-2-4 Ni/C 試料からの生成クラスター
- 4-2-5 Ni/Y/C 試料からの生成クラスター
- 4-2-6 試料の違いによる比較と実験結果のまとめ
- 4-2-7 金属触媒効果と成長モデル

第5章 結論

- 5-1 結論
- 5-2 今後の課題

参考文献

謝辞

第1章 序論

1.1 はじめに

1.1.1 クラスター

クラスター(cluster)とは,同一または似た元素の原子・分子が数個から数千個程度集まった集 合体のことであり,物理化学の新しい研究対象になっている.金属や半導体のクラスターの研究 には薄膜技術やプラズマ加工などへの工業的応用が期待されており,マイクロクラスターの研究 上の発展で発見されたフラーレン(fullerene)やナノチューブ(nanotube)には,その特徴的な構造, 物性,反応性などから,新素材としての活用や工学的な応用が期待されている.

中空ケージ構造をもった炭素のクラスター(フラーレン)は,サッカーボール型分子 C60 の発 見者の R.E.Smalley, H.W.Kroto, R.F.Curl の3名が1996年にノーベル賞を授与されるなど, 非常に注目を集めている.C60など閉じたケージ状の炭素分子を一般にフラーレンと呼び,ダイア モンド,グラファイトに続く炭素の第3の同素体であると位置づけられている.また,内部に金 属元素を含むフラーレンや,1991年にはカーボンナノチューブが発見されている.なお金属内包 フラーレンのように,フラーレンに金属のついたものをメタルフラーレンと呼んでいる.ここに 代表的なフラーレンの構造をFig.1-1に示す.

(b) Structure of La@C₈₂

(c) Structure of Carbon Nano-tube

Fig.1-1 代表的なフラーレン

1.2 フラーレンとナノチューブ

1.2.1 フラーレンの発見と大量合成

1985年、分光学者であり、星間分子研究で有名だった H.W.Kroto が、分子クラスターの研 究で有名だった R.E.Smalley と共同して星間空間で炭素分子が生成する機構を解明する目的 のため炭素クラスターの生成実験をおこなった[1].ノズル内でグラファイトに高エネルギー のレーザーを照射して炭素を蒸発させ、これをヘリウガスで冷却しながら下流に運び、ノズ ル先端から超音速膨張させることにより生成した炭素クラスターの質量分析を行ったのであ る.彼らは、こうして得られた質量スペクトルにおいて、C60分子が卓越して多量に生成され ることを発見した.彼らは C60 がこのように安定なのは、C60 が5員環と6員環からなるサッ カーボールの形をしているからだと予想した.そしてサッカーボール型の構造を思い付く段 階でアメリカの有名な建築家であるバックミンスター・フラーの設計によるドームからアイ デアを得たことから、彼らは C60 に、バックミンスターフラーレンという名前をつけた.し かしながら、当初、C60 が本当にサッカーボールの形をしているかどうか懐疑的な意見も多く、 マクロ量の C60 を用いた X 線や電子顕微鏡による構造解析が強く望まれ、大量生成法に対し て多くの実験が行われた.

その後,1990年になり Kratschmer と Huffman らが抵抗加熱法による,大量合成法を発見した.Kratschmer と Huffman らは星間空間に存在するとされるグラファイトに似た,炭素微粒子を作り出そうとし,偶然にも C60の新合成方法を見いだしたのである.これにより,C60に対する研究が急激に活発になり,溶液の NMR(核磁気共鳴)スペクトルによって C60がサッカーボールの形状であることが実験的に確認された.また後に発見されるカーボンナノチューブもアーク放電法による,フラーレンの大量生成時に発見されている.

この C₆₀の発見がフラーレンと呼ばれる一群の新しい構造を持つ炭素分子が発見される起爆 剤となり, R.E.Smalley, H.W.Kroto, R.F.Curl は 1996 年にノーベル化学賞を授与されるこ ととなった.なお,炭素原子 60 個がサッカーボール型になると安定であろうというアイデア は大澤 映二が日本の論文で発表している.

1.2.2 フラーレンの生成方法

フラーレンの生成方法はいくつか存在するが,それらの基本方針は炭素に高いエネルギーを与え て蒸発させ,それを冷却する過程で反応凝縮する物の中からC60などのフラーレン類を取り出す, というものである.以下,現在最も一般的なフラーレンの生成方法であるアーク放電法と今回の 研究で用いたレーザー蒸発超音速膨張法について示す.

・アーク放電法

1990 年に, Kratschmer と Huffman らによって,抵抗加熱により黒鉛を蒸発させる方法で大量 にフラーレンが生成,単離された[2].その後, R.E.Smalley らによって考案されたグラム単位で フラーレンを生成できる方法がアーク放電法である.これによって少量の C_{60,}C₇₀の入手は容易 になり,フラーレン,特に C₆₀の研究は爆発的に広がった.装置の概要を Fig.1-2 に示す.

Fig.1-2 アーク放電法によるフラーレン生成装置

原理的には,真空ポンプにより空気を除いた真空チャンバーに数十から数百 Torr のヘリウムを 封入して,その不活性ガス雰囲気中でグラファイト棒を電極としてアーク放電を行うものであり, アーク放電により蒸発した炭素が壁面に付着し,そのススの中に10%程度フラーレンが含まれる. 電極として金属原子をまぜたグラファイト棒を用いることにより,メタルフラーレンを生成する ことができる.

次に, 典型的なフラーレンの精製分離法を Fig.1-3 に示す.

Fig.1-3 フラーレンの精製分離法の例

生成したススをトルエン等の有機溶媒に溶かせばフラーレンのみが溶けて赤紫色になる.この溶液をフィルターに通すことでススを取り除き,その後溶媒を蒸発させれば C60 を 80%程度,C70 を 15%程度含んだフラーレンの粉末が得られる.このフラーレンをクロマトグラフィーで分離すれば C60,C70 とさらに大きな高次フラーレンが単離できる.微量しか生成されない高次フラーレンや金属内包フラーレンの単離には高性能液体クロマトグラフィー(HPLC)が用いられる.

金属内包フラーレンを単離する場合は空のフラーレンから完全に分離するために,複数の固定 相を用いることが必要である.しかし,Sc@C82,Ba@C82等多くの金属内包フラーレンが単離さ れてきてはいるものの,多く存在すると予想される MC60については CaC60が単離されたという 報告があるのみである.これは,MC60が大気中や溶媒中で不安定であるためだと考えられる.今 後,新しい固定相の開発等,MC60の抽出方法の発見が待たれる.

・レーザー蒸発超音速膨張法

真空チャンバー内で試料にレーザー照射して蒸発させる.蒸発したガスは高圧のヘリウムガスに 衝突し冷却されながら,クラスターとなる.出来たクラスターはノズルから超音速膨張しながら 噴射される.この方法は,成型した固体試料ならば,あらゆる化合物に対して用いることができ, 実験条件のパラメーターも比較的容易に扱うことができる.R.E.Smalley らが,始めに C60 を発 見した時用いたのもこの方法であり,本研究室でもこの方法を採用している.

レーザー蒸発超音速膨張法を用いた代表的なクラスターソースを Fig.1-4 に示す.

1.2.3 メタルフラーレン

フラーレンはその内部に他の金属原子が入るに十分大きな空間を持っている.Comの発見後,ス モーリーらは黒鉛の棒の表面に塩化ランタンをコートした試料をレーザー蒸発させ,生成された クラスターの質量分析を行った.この実験によって,LaCom(44 \leq n \leq 80,n: 偶数)の存在が示唆され た.その後,アーク放電法により生成されたLaComを加めて溶媒抽出され,さらにYCome なども抽出された.金属原子が実際にフラーレンのケージに内包されていることが初めて疑いな く示されたのは Y@Come てある.アーク放電法により生成されたメタルフラーレンについては MEM(Maximum Entropy Method)によるX線結晶構造解析により,Y原子がCome にあるのではなく,フラーレンの内壁に結 合しているのが特徴である.これまでのところ,多くの金属元素の中でもSc,Y,Laなどの 族 の遷移金属が特に内包されやすいことが分かっている.その他,Ce,Pr,Nd,Gd,Er,Tb,Tm 等のランタノイド元素が内包される.これらの金属原子の特徴としては,イオン化ポテンシャル が比較的低い事があげられる.

金属は多量に生成される C₆₀, C₇₀ではなく,空のフラーレンとしてマイナーな C₈₂ に内包され やすいことが特徴である.1 個の原子だけでなく,複数(2,3 個)の原子が内包されていることも ある.Sc は特に複数個の原子が入ったフラーレンを生成しやすく,この場合でも C₈₂ に入りやす い.また,Ca 等の 族のアルカリ土類金属原子も内包されると言われているが,Ca の最大の特 徴は C₈₂ にではなく,C₆₀ に内包された初めての金属であることである.

小さなサイズの金属内包フラーレンとしてはLa@C36が生成したという報告もあり、興味深い.

1.2.4 ナノチューブの発見

前述のアーク放電法により炭素電極を蒸発すると、フラーレンを含んだすすの他に、陰極先端 にスラグ状の堆積物が形成される.C60の多量合成法が発見された直後の1990年末から1991年 にかけては,ほとんどのフラーレン研究者は C60の生成に熱中していたため,陰極先端に堆積し た塊にはあまり関心がなかった.しかし,飯島(NEC 基礎研究所)はすすの回収後に残されてい たこの堆積物に注目し,これを電子顕微鏡で調べることにより,多層ナノチューブ(MWNT:Multi Wall Nanotube)を発見した[2].

多層ナノチューブの発見から 2 年後の 1993 年には , 飯島・市橋と Bethune らが 1 枚のグラフ ェンが円筒状に巻いてできた構造の単層ナノチューブ(SWNT: Single Wall Nanotube)を発見し た.この時も本来の目的は,鉄やコバルトなどの磁性金属の超微粒子をグラファイトで包んだ, ナノカプセルを合成するのが目的であった.このようにカーボンナノチューブの発見は偶然の産 物であったといえる[3].

fig1.5 単層ナノチューブ

1.2.5 ナノチューブの構造

グラファイトの構造上の基本的特徴は、炭素原子の平らな層が平行に積み重なっていることで ある.おのおのの層では炭素原子が共有結合により強く結ばれ,蜂の巣状の規則正しい6員環の ネットワークを形成している.炭素原子のこのような平面構造の1 枚のことを"グラフェン (graphene)"という.

単層カーボンナノチューブはこのグラフェンが円筒状に丸まって,継ぎ目なく閉じた構造をし ており,端は5員環が加わることで閉じている.単層ナノチューブの長さと直径は金属触媒の種 類に依存し,長いものはおよそ数μmあり,直径は典型的には1nmから3nm位までのものを得 ることができる.もっとも細いものは C60のそれと同程度の 0.7 n m である.

多層ナノチューブは 2 から数 10 のグラフェンが積み重なってできたチューブで,直径は 4 n

mから 50 nmの範囲にあり,長さは数 10 nm以上ある.多層ナノチューブの TEM 写真には,チ ューブの軸方向に平行に走る間隔 0.34 nmの格子縞が中心の空洞の両側に観察される.両側の格 子縞の本数は同じである.チューブの先端部分でも側面と同じ数の層がそれぞれ多面体的に閉じ ている.6員環ネットを閉じるためには 12 個の 5 員環が必要なので,チューブの場合にはそれぞ れの両端に 5 員環が 6 個ずつ存在することになる.多層ナノチューブは継ぎ目のない円筒が入れ 子構造状に重なった構造であると推測されている.この同軸入れ子構造モデルは,積層数の少な いカーボンナノチューブには当てはまるであろうが,太いものでは必ずしも各層が閉じていない 可能性もある.

多層ナノチューブの物性はバルクのフラファイトと大差ないが,単層ナノチューブは分子とバルクの中間にある1次元物質として新しい物性が期待されている.

1.2.6 ナノチューブと触媒

多層ナノチューブを作成するには炭素のみを蒸発・凝縮させればよいが,単層ナノチューブを 作成するには触媒となる金属が必要となる.主な触媒を Table.1-1 に示す.今のところ,触媒金 属の炭素に対する混合比は数原子%程度であるが,この混合比が最適なものかどうか,更に詳し く調べる必要がある.例えば触媒として Ni のみで生成されるナノチューブの量と Co も含んだ試 料を用いる場合とでは,2倍程度も生成量が増加する.逆に Co だけでは,ほとんど生成されず, 触媒の効果がナノチューブ生成には大きな鍵を握っていると思われるが,現在のところ触媒とし てどういった条件が有効かということや,単層ナノチューブ成長に関するメカニズム,触媒効果 などは分かっていない.

金属		製法	触媒能	濃度比
鉄族	Fe	アーク放電法	非常に強い	
	Со	アーク放電法	中程度	
	Ni	アーク放電法	弱い	
		レーザーオープン法		
	Fe-Ni	アーク放電法	強い	Fe:Ni=1:1(重量比)
		レーザーオーブン法		
	Ni-Co	レーザーオープン法	非常に強い	Co/Ni = 0.6/0.6(原子%)
白金族	Rh	アーク放電法	中程度	
	Ru-Pd	アーク放電法	強い	
	Rh-Pd	アーク放電法	強い	Rh/Pd=1.2/1.2(原子%)
		レーザオーブン法		
	Rh-Pt	アーク放電法	強い	
希土類	Y	アーク放電法	中程度	
	La	アーク放電法	中程度	
	Ce	アーク放電法	中程度	
鉄族 -	Ni-Y	アーク放電法	非常に強い	Ni/Y=4.2/1 (原子%)
希土類				or 0.6/1.7 (原子%)
混合系	Ni-La	アーク放電法	強い	Ni/La = 1.1/0.3 (原子%)

Table.1-1 触媒金属

1.2.7 フラーレン,ナノチューブの応用

フラーレンについての研究は 15 年程度,ナノチューブに関しても 10 年程度しか経ておらず, その応用にいたっても依然未発展の段階である.しかしながら応用面でフラーレンには,数多く の可能性があることが指摘されおり,ナノチューブにおいては様々な工学的分野における応用性 の高さを持ち、大変注目をあびている.また現実的にナノチューブを用いた製品開発も既に進め られている.

フラーレンの応用

・<u>超伝導素材</u>

C60 に真空中でカリウムの蒸気を吸い込ませ、いろいろな組成の物をつくった結果、K3C60 は転移温度が 18K という有機材料をして非常に高い超伝導性をしめすことが報告されている.更に, NEC の研究グループは Cs2Rb1C60 が転移温度 33K に達したと報告している.このような結果からフラーレン及び、メタルフラーレンは高温超伝導の素材としての注目されている.

・固体潤滑材

C₆₀は球形状であるが,圧力をかけると,円盤状になり,再び,圧力を取り除くと,元の形に戻るという非常に弾力性に富んだ側面を持っている.単純に考えると,ミクロなサイズのベアリング,あるいは潤滑材になるのではないかと考えられる.また,弾力性を考えると緩衝材への応用 も考えられる.

・<u>放射化分析への利用</u>

ガドリニウム原子を内包した、Gd@C₈₂に中性子を照射することにより、¹⁵⁹Gd@C₈₂と¹⁶¹Tb@C₈₂ を生成し、C₈₂ 炭素ゲージ中での放射性元素の崩壊が観測された.その結果、 崩壊時にも C₈₂ は安定であることが分かった.つまり、金属内包フラーレンを放射性のラベリングに用いること が可能である.

・MRI(磁気共鳴診断)の造影剤

炭素の生体適合性の良さからも,医薬品として使えるのではないかと言われている.しかし, 金属原子がフラーレンに内包されるメカニズムには,いまだ未解明な部分が多い.

ナノチューブの応用

1999 年ボストン大の Ren らは, Ni を蒸着したガラス基板上でアンモニアガスとアセチレンを 分解することで,ナノチューブを稲のように揃えて生やすことができることを示した.さらにガ ラス基盤状に Ni の微粒子を格子上に蒸着させ, CVD を用いると,蒸着した部分だけに等間隔に ナノチューブの針が生成する.このようなある程度のナノチューブ生成に関する制御方法や大量 生成の技術も進んでいるために,その応用性はフラーレンよりも高いと言える.[5]

Fig.1-7 配向性のあるチューブ列

(出典:伊勢電子工業)

<u>平面壁掛けパネルディスプレイ</u>

ナノチューブを熱電子放出型電子源(フィールドエミッタ)に利用することにより,省電力, 高輝度,高速応答,長寿命ディスプレイが実現される.従来のエミッタは,人工的な加工を行う ために,先端形状の制御が困難で,放出電子の均一化が困難であった.しかしながら,CVDによ るナノチューブの生成によって,先端部分に幅がわずか1~2ナノメートルで電気を通すカーボン ナノチューブの成長に成功したという報告があり,10V程度の電圧で電子が放出することが確認 されている.また単位面積あたりの電流値が,従来の電子放出材料の最高値以上であり,低真空 下(従来10-9 Torr・ナノチューブ利用10-6Torrで外部排気なし)での高輝度が実現している. 工業的に低電圧かつ微細加工の不要という効果でコストの低減や,またバッテリー電源を利用し たディスプレイを用いる機器には大変有効であり,近年,大きな発達を遂げ,市場が拡大してい る携帯電話端末や携帯テレビ等における活用が期待される.

<u>水素貯蔵材料</u>

水素の高密度貯蔵は,燃料電池に代表されるように無公害で無尽蔵なクリーンエネルギーを供 給できる源として近年注目されており,水素貯蔵材料の開発が急がれている.水素を貯蔵(吸蔵) する物質として,活性炭素繊維や水素化金属が知られているが,単位体積当り取り出せるエネル ギーの量や吸蔵物質の比重を考えると十分とは言えない.

単層ナノチューブは軽く,かつ中空であるため単位質量および単位体積当り多量のガスを貯蔵することが可能である.Dillonらは,Coを触媒としてアーク放電法で作成した単層ナノチューブを用いH2の貯蔵量を測定した.彼らは,単層ナノチューブに273Kで300TorrのH2ガスを10分間貯蔵させ,その後更に133Kに冷却し3分間貯蔵させた.H2の昇温脱離の実験は5×10⁻⁸Torrの真空下,1K/sの昇温率で行われ,脱離速度のピークがおよそ150Kに現れることを確認している.この温度自体は,活性炭素繊維とほとんど差はないが,単層ナノチューブの水素吸蔵量は

10 倍程度大きな値を示していた.

理論的な考察によると,直径 1.22 n mの単層ナノチューブ(アームチェア - 型(9,9)チューブ) の束において,チューブの内側の空間と外側表面(またはチューブとチューブの間の空間)に最 密に貯蔵されたとすると,水素貯蔵量はおよそ 1.6 重量%,エネルギー密度はおよそ 28kgH2/m³ になると見積もられている.この値は,水素化金属に匹敵する.更にチューブ直径を(10,10), (12,12),(15,15)と増加させれば(それぞれ直径 1.36nm, 1.63nm, 2.00nm),水素吸蔵,エ ネルギー密度はそれぞれ(およそ 2.2 重量%,およそ 35kgH2/m³),(およそ 3.1 重量%,およそ 45kgH2/m³),(およそ 4.0 重量%,およそ 50kgH2/m³)のように増加していき,前述した目標値 (6.5 重量%, 62kgH2/m³)に近づく.

半導体素子

半導体のシリコンやチタンなどの基板上にナノチューブを置き,真空中で約900度の温度で熱処理を施すことで結合することが分かっている.接触部分はチューブと基板の間で原子拡散が起こり,原形を保った化合物ができるので,このため基板の材料を変更することで,目的に合った電気特性の接合を作ることがナノレベルで可能となる.例えば,シリコンと接合した場合,接触部分には炭化シリコン(SiC)が形成され,この部分の構造は「カーボンナノチューブ-SiC-Si」からなるヘテロ結合になる.SiC は半導体なので,チューブが金属的ならばこの部分にショットキーダイオードが作られたことになる.またこれらに用いられる微細構造化技術を用いると顕微鏡探針としてナノチューブを利用することも可能である.

<u>その他の応用例</u>

ナノチューブには上記の応用の他に Table.1-2 に示すような幅広い応用が考えられている.

分野	応用
	樹脂の強化
	伝導性複合材料
複合材料	セラミックスの強化
	金属の強化
	C/C 複合材料
	電池の電極
電子材料	電気 2 重層コンデンサー(スーパーキャパシター)
	電子デバイス
電子源	電界放出型電子源
	フラットパネルディスプレイ
ナノテクノロジー	走査トンネル顕微鏡の探針
	ナノウィスカー , ナノロッド
バイオテクノロジー	バイオセンサー
	注射針
医薬	カプセル(薬の生体内輸送と放出)
	触媒およびその担体
化学	有機化学の原料
	ナノケミストリー

Table.1-2 カーボンナノチューブの応用例

1.2.8 応用化への取り組みと課題

近年のナノテクノロジーに関する世界的な関心の高まりは国家戦略的に推進され,米国では政府が 2000 年に 5 億ドルの予算を確保するなど,とりわけ IT 関連分野,バイオテクノロジー分野 と並ぶ,21 世紀の発展的技術分野としての注目をうけている.そのような様々な支援環境の元, ナノテクノロジーの代表技術としてナノチューブの応用が掲げられており,研究は益々盛んになってきている.現実的な応用状況として,ナノチューブの大量生成プラントが開発されており, 2000 年 6 月には 1 時間に 200 g の大量合成装置も開発されている(Fig.1-8).また配向性のあるナ ノチューブの生成技術により,フィールドエミッタとして利用したフラットパネルディスプレイ の試作品や高電圧型蛍光表示管(Fig.1-9)も公開され,製品化への開発が進められている.しかし ながら,フラーレンの応用では大量生成法に関し,アーク放電法を遙かに越えるような仕組みが 発見されず,頓挫したような状況にも陥った面があり,これはカーボンナノチューブに関しても 同様な問題を解決していく必要があるといえる.それは,現状で進められている CVD 法の活用 や新たな生成法の開発などによって,ブレークスルーが十分可能であろう.そして,さらなる技 術革新のためには,ナノチューブ形状の制御や最大の謎である生成機構の解明が非常に重要であ り,本研究ではそれらを主眼に置いている.

フロンティアカーボンテクノロジープロジェクト 熱CVD法によるナノチューブの大量合成技術の開発

カーボンナノチューブ大量合成装置 (昭和電工生産技術センター内)

Fig.1-8 大量合成装置 2000 年 6 月 試験設備による 1 時間当たり 200g のカーボンナノチューブの合成を確認 (昭和電工と物質工学工業技術研究所)

Fig.1-9 カーボンナノチューブ冷陰極を用いた 高電圧型蛍光表示管(伊勢電子工業)

1.3 本研究の目的

カーボンナノチューブの生成機構の解明への手がかりを得る

非常に多くの応用の可能性を持っているナノチューブであるがその応用性のためには,構造的 制御・物性制御・高効率の生成法の確立等が必要となってくる.しかしその生成機構は現在でも 明らかでなく,様々なモデルが提唱されている.

そこで本研究では,ナノチューブの生成機構を,クラスターレベルから検討し,その成長プロ セスに関する触媒効果等の知見を得ることを目的としている.

ナノチューブの生成においては、レーザーオーブン法、アーク放電法といった主要な生成装置 のいずれにおいても、対象試料にエネルギーを与えることで試料を蒸発させ、一度、クラスター サイズを経てから、ナノチューブに成長すると考えられる.したがって、クラスターレベルにお ける生成機構の検討をすることで、ナノチューブ生成の非常に初期の段階における生成プロセス を検討する.

第2章 原理

2.1 FT-ICR 質量分析の原理

2.1.1 基本原理

FT-ICR(Fourier Transform Ion Cyclotron Resonance)質量分析[6] [7] [8]の基本的な原理を説 明する.

FT-ICR 質量分析は強磁場中でのイオンのサイクロトロン運動に着目した質量分析手法であり, 原理的に 10,000 amu 程度までの大きなイオンの高分解能計測が可能である.その心臓部である ICR セルは(Fig. 2-1), 6 Tesla の一様な強磁場中に置かれており,内径 42 mm 長さ 150 mm の 円管を縦に 4 分割した形で,2 枚の励起電極(Excite: 120° sectors)と 2 枚の検出電極(Detect: 60° sectors)がそれぞれ対向して配置されている.またその前後をドア電極(開口 22 mm)が挟むよ

Fig. 2-1 FT-ICR 質量分析装置セル部の原理的構成

うに配置されている.

ー様な磁束密度 *B*の磁場中に置かれた電荷 *q*, 質量 *m*のクラスターイオンは, ローレンツ力を 求心力としたサイクロトロン運動を行うことが知られており, イオンの *xy* 平面上での速度を $V_{xy}(v_{xy} = \sqrt{v_x^2 + v_y^2})$, 円運動の半径を *r*とすると

$$\frac{mv_{xy}^{2}}{r} = qv_{xy}B$$
(1)

の関係が成り立つ.イオンの円運動の角速度をωとすると

$$\omega = \frac{v_{xy}}{r} = \frac{qB}{m}$$
(2)

これより,周波数 fで表すと

$$f = \frac{qB}{2\pi m} \tag{3}$$

となる.これよりイオンの円運動の周波数はその速度によらず比電荷 q/m によって決まることがわかる.クラスターイオンの電荷 q は,蒸発用のレーザーパワーがそれほど大きくない場合,ほとんどの場合電子1価であるため(パワーが大きいと多光子イオン化と同じ原理により2価,3価のイオンができうる)質量 m に反比例して周波数が決定され,周波数を計測することでクラスターイオンの質量を知ることが可能となる.

質量スペクトルを得るためには,励起電極間に適当な変動電場をかけることによりクラスター イオン群にエネルギーを与え,円運動の位相をそろえると共に半径を十分大きく励起すると,検 出電極間にイオン群の円運動による誘導電流が流れる.この電流波形を計測しフーリエ変換する ことによりクラスターイオン群の質量分布を知ることができる.

なお,イオンの半径方向の運動がサイクロトロン運動に変換され,さらに z 軸方向の運動を前後に配置したドア電極によって制限されるとイオンは完全にセルの中に閉じこめられる.この状態で,レーザーによる解離や化学反応などの実験が可能である.

2.1.2 サイクロトロン運動の励起(excitation)

クラスターイオン群がセル部に閉じこめられた段階では,各クラスターイオンのサイクロトロ ン運動の位相及び半径はそろっていない.2枚の検出電極から有意なシグナルを得るためには, 同じ質量を持つクラスターイオンの円運動の位相をそろえ,かつ半径を大きくする必要がある. このことは,2枚の励起電極間に大きさが同じで符号の異なる電圧をかけイオンに変動電場 Eを かけることで実現できる.このことをエキサイトと呼んでいる.

以下,電圧波形を加えることにより円運動の半径がどのように変化するかを説明する.セルに 閉じこめられたクラスターイオンの質量を *m*,電荷を *q*とすると,このイオンが従う運動方程式 は

 $m\frac{d\mathbf{v}}{dt} = q\mathbf{E} + q\mathbf{v} \times \mathbf{B}$ (4)

となる.また,イオンがエキサイトにより速度を上げるため,円運動の半径は大きくなる.この ときある微小時間∆tの間にイオンは次式で表されるエネルギーを吸収する.

$$A(\Delta t) = q\mathbf{E}(\Delta t) \cdot \mathbf{v}_{\mathbf{x}\mathbf{y}}$$
(5)

ここで,加える変動電場を, $\mathbf{E} = (0, E_0 \cos \omega t)$ とすると(4)式は

$$m\left(\frac{\frac{dv_x}{dt}}{\frac{dv_y}{dt}}\right) = q\left(\frac{0}{E_0\cos\omega t}\right) + qB\left(\frac{v_y}{-v_x}\right)$$
(6)

と書き換えられ,これを解いて(5)式に代入すると

$$A(\Delta t) = \frac{E_0^2 q^2 \Delta t}{4m}$$
(7)

となる.イオンをエキサイトする時間を *Texcite*とすると,(7)式を時間 0 から *Texcite*まで積分する とその間にイオンが吸収するエネルギーが求まる.この吸収されたエネルギーは全てイオンの運 動エネルギーになることから次式が導かれる.

$$\frac{m\omega^2 r^2}{2} = \int_0^{T_{excite}} A(t)dt$$

$$= \frac{E_0^2 q^2 (T_{excite})^2}{8m}$$
(8)

(2)式を代入し半径 rについて解く.

$$r = \frac{E_0 T_{excite}}{2B} \tag{9}$$

これより, エキサイトされたクラスターイオンの円運動の半径はその比電荷 q/m によらないこと が分かる.よって変動電場の大きさをどの周波数においても一定にすれば, あらゆる質量のクラ スターイオンの円運動の半径をそろえることが可能である.

Fig. 2-2 質量分析管配置図ならびにイオントラップタイミングチャート

2.1.3 イオンの閉じこめ(trap)

イオンを ICR セルに閉じこめる方法 (イオントラップ)について説明する.

Fig. 2-2 に FT-ICR 質量分析装置の各電極管の配置図を示す.クラスターソース(第3章)で 生成されたクラスタービームは減速管を通過した後 ICR セルに直接導入される.減速管は超音速 で飛行するクラスターイオンの並進エネルギーを一定値だけ奪うために,パルス電圧が印加可能 となっている.等速運動しているクラスターイオンが減速管の中央付近に到達するまで OV に保 ち,その後瞬時のうちに負の一定電圧に下げる.この急激な電圧変化はクラスターイオンが減速 管の中を通過している間はイオンの運動に何ら影響をきたさない.しかし,クラスターイオンが 減速管を出て Front Door に到達するまでの間に一定並進エネルギー分だけ減速される.ICR セ ルの前方には,一定電圧(+5 V)に保つ Front Door と,クラスタービーム入射時にパルス的に電圧 を下げイオンをセル内に取り込む Screen Door,後方には一定電圧(+10 V)の Back Door を配置し てある.それぞれ±10V の範囲で電圧を設置でき,減速管で減速されたクラスターイオンのうち, Front Door の電圧を乗り越えて Back Door の電圧で跳ね返されたイオンがセル内に留まる設計 である.また,各電極管にかける電圧値を正負逆にすることで,正イオン・負イオン両方の質量 分析が実現できる.さらに,減速管にかける電圧値によってある程度の質量選別が可能となって いる.

2.2 励起と検出

励起極板間に加える励起波形としていくつかの手法が考えられるが,本実験装置では FT-ICR 質量分析装置の能力を最大限に引き出す SWIFT(Stored Waveform Inverse Fourier Transform) という方法を採用している.本節ではその SWIFT と呼ばれる励起信号,およびその後検出され る検出信号について述べる.

2.2.1 離散フーリエ変換

次節以降での波形解析の前に本節で離散フーリエ変換について簡単にまとめる.

物理的過程は,時間 tの関数 h(t)を用いて時間領域で記述することもできるし,周波数 fの関数 H(f)を用いて周波数領域で記述することもできる.多くの場合,h(t)と H(f)は同じ関数の二つの異 なる表現と考えるのが便利である.これらの表現間を行き来するために使うのが次のフーリエ変 換の式である.

$$H(f) = \int_{-\infty}^{\infty} h(t)e^{-2\pi i f t} dt$$

$$h(t) = \int_{-\infty}^{\infty} H(f)e^{2\pi i f t} df$$
(10)

もっとも普通の状況では関数 h(t)は時間について等間隔に標本化される.データの点数 $N \leq$, 時間刻み ΔT の時系列データ $h_n = h(n\Delta T)$ があるとする(n = 0, 1, 2, ..., N-1). N個の入力に対して N個を超える独立な出力を得ることはできない.したがって,離散的な値

$$f_{k} \equiv \frac{k}{N\Delta T} = k\Delta F, \quad \left(k = -\frac{N}{2}, \dots, \frac{N}{2}\right)$$
(11)

でフーリエ変換を表す.あとは積分(10)式を離散的な和

$$H(k\Delta F) = \int_{-\infty}^{\infty} h(t)e^{-2\pi i ft} dt$$

$$\cong \sum_{n=0}^{N-1} h(n\Delta T)e^{-2\pi i f_n n\Delta T} \Delta T$$

$$= \Delta T \sum_{n=0}^{N-1} h(n\Delta T)e^{-\frac{2\pi i nk}{N}}$$
(12)

で置き換えるだけである.ここで, $W = e^{\frac{2\pi i}{N}}$ とすると離散フーリエ変換 H_k は

$$H_{k} \equiv \sum_{n=0} h_{n} W^{-nk}$$
(13)

離散フーリエ変換は N 個の複素数 h_nを N 個の複素数 H_kに移す.これは次元を持ったパラメ ータ(例えば時間刻みΔT)には依存しない.(12)式の関係は,無次元の数に対する離散フーリエ 変換と,その連続フーリエ変換(連続関数だが間隔ΔTで標本化したもの)との関係を表すもの で,

と書くこともできる.

ここまでは(13)式の kは-N/2 から N/2 まで動くものと考えてきた.しかし(13)式そのものは kについての周期関数(周期 N)であり, $H_k = H_{N-k}$ (k = 1, 2,...)を満たす.このことより普通は H_k の $_k$ は0 から N-1まで(1周期分)動かす.こうすれば, $k \ge n(h_n \circ n)$ は同じ範囲の値を ≥ 0 , N個の数を N個の数に写像していることがはっきりする.この約束では,周波数0 は k = 0に,正の周波数0 < $f < 1/2 \Delta T$ は1 $\le k \le N/2-1$ に,負の周波数 $-1/2 \Delta T < f < 0$ は $N/2+1 \le k \le N-1$ に対応する.k = N/2は $f = 1/2 \Delta T$, $f = -1/2 \Delta T$ の両方に対応する.

このとき,離散逆フーリエ変換 hn(= h(n△T))は次式のようになる.

$$h_n = \frac{1}{N} \sum_{k=0}^{K-1} H_k W^{nk}$$
(14)

2.2.2 SWIFT による励起

SWIFT(Stored Waveform Inverse Fourier Transform)とは今自分が必要としている励起信号のパワーを周波数領域で考え,それを逆フーリエ変換して実際に励起電極間に加える励起波形を作り出す方法である.この方法の利点は任意の質量範囲のイオンを任意の回転半径で励起させることが可能である点である.

具体的には周波数に対する回転半径の値のデータ列をつくり、それを逆フーリエ変換して

Fig. 2-3 励起電極の配置と X-Y座標系

SWIFT 波をつくるのだが,加える電圧波形とイオンの回転半径・位相の関係を解析しておく必要がある.

Fig. 2-3 のような位置に励起電極があるとすると,大きさが同じで符号の異なる電圧をかける ことによりイオンに電場 E をかけることができる.電場 E は簡単のため一様であると仮定し,ま た磁場 B は *xy* 平面に垂直な方向にかかっているものとする.

ここで Fig. 2-3 のようにイオンと共に回転する座標系をとる.イオンの回転運動の中心からイオンの現在の位置に X軸を引き,これに直交して Y軸を引く.つまり X-Y座標はイオンの回転に固定されている.イオンにかかる電場 E を X,Y座標軸にそって分解した成分を E_X,E_Yとする. イオンの速度は v で表し,vと表記した場合は絶対値のみを表す.

まず,イオンの回転半径 r は(2)式より

$$r = \frac{mv}{qB} \tag{15}$$

となり,イオンの速度の絶対値 vのみによって求まる.よって回転半径 rの従う微分方程式は $\frac{dr}{dt} = \frac{m}{eB} \cdot \frac{dv}{dt}$ (16)

となる.ここで Fig. 2-3 で示されるように,イオンに力積 qEdt が加わるとき,速度の絶対値 v に影響するのはその Y成分のみであり

$$mdv = eE_{Y}dt$$

$$\therefore \frac{dv}{dt} = \frac{eE_{Y}}{m}$$
(17)

の関係が成り立つ.これを(16)式に代入しrの微分方程式(18)が得られる.

$$\frac{dr}{dt} = \frac{E_{\gamma}}{B}$$
(18)

次にイオンの回転の位相が従う微分方程式を求める.イオンに何も力が加わらなかった場合, 空間的に固定された *x-y* 座標系で見て位相は角速度 $\omega = qB/m$ で進んでいくことに注意しておく. イオンに力積 *qEdt* が加わるとき,位相に影響するのはその *X* 成分のみであり,変化量はラジア ン単位で $-\frac{qE_x dt}{mv}$ となる.このことは,イオンはこの後,何も力が加わらなかった場合の位相 ωt に対して $-\frac{qE_x dt}{mv}$ を加えた位相にいつづけることを意味している.よって ωt からの位相差を φ と すると

$$\varphi = -\frac{qE_xdt}{mv} = -\frac{E_x}{rB}dt$$
(19)

が成り立ち, φの微分方程式(20)が得られる.

$$\frac{d\varphi}{dt} = -\frac{E_x}{rB}$$
(20)

まとめるとr, φ は次の微分方程式に従う.

Fig. 2-4 x'-y座標系と X-Y座標系の関係

$$\begin{cases} \frac{dr}{dt} = \frac{E_Y}{B} \\ \frac{d\varphi}{dt} = -\frac{E_X}{rB} \end{cases}$$
(21)

次にイオンの固有角速度 ω で回る座標系をとり,この座標系で微分方程式(21)を表現しなおす. この新しい座標系を x' y座標系とすると,x' y座標系は x - y座標系(空間的に固定)を ωt 回転さ せたものである.先の X-Y座標系はイオンに固定された座標系だから,これらの座標系の関係は Fig. 2-4 のようになる.

Fig. 2-4 から明らかに

$$\begin{cases} x' = r \cos \varphi \\ y' = r \sin \varphi \end{cases}$$
(22)

となり,これを微分すると

$$\begin{cases} \frac{dx'}{dt} = \frac{dr}{dt}\cos\varphi - r\sin\varphi\frac{d\varphi}{dt} \\ \frac{dy'}{dt} = \frac{dr}{dt}\sin\varphi + r\cos\varphi\frac{d\varphi}{dt} \end{cases}$$
(23)

(24)

これに(21)式を代入し、行列にまとめると $\frac{d}{dt} \begin{pmatrix} x' \\ y' \end{pmatrix} = \frac{1}{B} \begin{pmatrix} \sin \varphi & \cos \varphi \\ -\cos \varphi & \sin \varphi \end{pmatrix} \begin{pmatrix} E_x \\ E_y \end{pmatrix}$

ここで X-Y座標系は x'-y座標系を φ 回転したものだから

$$\begin{pmatrix} E_x \\ E_y \end{pmatrix} = \begin{pmatrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{pmatrix} \begin{pmatrix} E_{x'} \\ E_{y'} \end{pmatrix}$$
(25)

の関係が成り立ち,これを(24)式に代入すると

$$\frac{d}{dt} \begin{pmatrix} x' \\ y' \end{pmatrix} = \frac{1}{B} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} E_{x'} \\ E_{y'} \end{pmatrix}$$
(26)

さらに, x'-y平面を複素平面とみて,新たに複素数 Z(=(x', y)), $E(=(E_{x'}, E_{y'}))$ を導入して書きなおす.

$$\frac{d}{dt}Z' = \frac{1}{iB}E'$$
(27)

x-y座標系(空間的に固定)を ωt 回転させたものがx'-y座標系だから

$$E' = E(t)e^{-i\omega t} \tag{28}$$

である.(27)式を励起波形をかける時間0からTの間積分するとZを時間の関数として得ることができる.

$$Z'(T) = \frac{1}{iB} \int_0^T E(t) e^{-i\omega t} dt$$
(29)

これより励起波形として E(t)(複素数表示)をかけたあとのイオンの回転半径 rは

$$r = \left|Z'(T)\right| = \left|\frac{1}{B}\int_0^T E(t)e^{-i\omega t}dt\right|$$

$$= \left|\frac{1}{B}\int_0^T E(t)e^{-2\pi i f t}dt\right|$$
(30)

となる.Fig. 2-3 の極板の配置では E(t)は常に純虚数になるが rを求めるだけなら実数として計算しても結果は同じである.E(t)は0から T以外では0だと考えると(29)式の積分範囲を $-\infty$ から+ ∞ としても同じであり,これは固有角速度 ω のイオンの回転半径rは E(t)のフーリエ変換の ω に比例するということを示している.

ここで励起電極につなげる任意波形発生器のデジタルデータを $h_n(=h(\Delta t) \cong E(t))$, この値の変化1 に対する電場 *E*の変化を E_u とすると(*)の対応関係より

$$H(k\Delta F) = \int_0^T E(t)e^{-2\pi i ft} dt$$

$$\therefore \frac{1}{B} \int_0^T E(t)e^{-i2\pi ft} dt = \frac{E_u \Delta T}{B} H_k$$
(31)

となる.よって(30)式より

$$r = \left| \frac{E_u \Delta T}{B} H_k \right|$$
(32)

ゆえに,周波数 k△Fに対して半径 rを希望するときは

$$\left|H_{k}\right| = \frac{rB}{E_{u}\Delta T} \tag{33}$$

となるデジタルデータを作成しておき、それを逆フーリエ変換した hnを励起電極にかける変動電場とすればよいのである.

2.2.3 検出波形と時間刻み

前節の要領で作成した SWIFT 波によるエキサイトにより,クラスターイオンは半径が同じで 空間的に位相のそろった円運動を行う.この円運動によって2枚の検出電極間に微弱な誘導電流 が流れる.この電流を適当な抵抗に流すことで電圧の振動に変換し,さらにアンプで増幅する. この増幅された電圧波形をデジタルオシロスコープにサンプリングして取り込み,時系列の実験 データを得る.得られたデータを離散フーリエ変換して周波数領域のパワースペクトルに変換す る.これから(3)式の関係を用いて質量スペクトルが得られる.

Fig. 2-5 に時間刻み,周波数刻み,全時間,全周波数の関係を示す.

データ点数 Nはオシロスコープのメモリによって決定されるので,時間刻みを変えることで得

Fig. 2-5 時間刻み,周波数刻み,全時間,全周波数の関係

られる質量スペクトルの解像度を操作することができる.

時間刻みをを短くすると,それにより計測できる最高周波数が大きくなるが,全時間も短くなるので周波数刻みが長くなり解像度が落ちる.逆に時間刻みを長くすると,それにより計測できる最高周波数が小さくなるかわりに周波数刻みが短くなり解像度は上がる.

実際に得られたデータの一例として Fig. 2-6(a)に周波数領域のパワースペクトルを,(b)に横軸 を質量にしたものを示す.(a)を見ても分かるように,質量の重い大きなクラスターほど高解像度 が必要である.よって,質量の小さなクラスターの実験をするときは,励起波形をサンプリング する時間刻みはある程度短くても十分であるが,大きなクラスターの実験をする際は時間刻みを 長くする必要がある.

Fig. 2-6 実験データの加工 (a)周波数スペクトル, (b)質量スペクトル

2.2.4 実際の流れ

実際の実験では以前にも述べたように,2.2.2 節で説明した方法で励起波形を作成し,それを励 起電極間に変動電場とし加えイオンのサイクロトロン運動を励起,その後検出電極間に誘導され る電流を計測する.例として Fig. 2-7 に励起波形と検出波形(差動アンプで増幅したもの)を示 す.実験のサンプルは本研究室のアーク放電装置により生成したフラーレン混合物を用いた.フ ラーレンサンプルは,黒鉛のアーク放電によって得られた陰極堆積物に,同じく黒鉛のアーク放 電によって得られたフラーレンをトルエンによって染み込ませ乾燥して作った.

励起波形としては前述のSWIFTという方法を用いてこの場合は10kHz~900kHzの範囲を励 起した.Fig. 2-7 における励起信号は質量スペクトルを得るのと同じ検出過程を経て測定してお り,検出測定の際に差動アンプを通した時の電気的特性によって若干変形している.励起が終わ った直後に観察された検出波形(50ns幅で1M個のデータサンプリング)は50ms程度以上の 間続いており,これのフーリエ成分から,C60(123.8kHz)に対応するピークが明瞭に観察される.

2.3 質量選別

減速管にかける電圧を操作することでおおまかな質量選別が実現できる.例としてシリコンを

サンプルとして用いた実験結果を Fig. 2-8 に 示す.減速管の電圧を-10 V に設定すると, 理論的には 15~20 eV の並進エネルギーを 持ったクラスターイオンが ICR セルに留ま る.これは約750 amu~1,000 amu(シリコ ンクラスターのサイズで Si27~Si36)に相当 する.また,-20 V に減速管の電圧を設定す ると Si45~Si54 が留まる計算になる.減速管 の電圧に対して質量スペクトルが大きい方 にシフトしていく様子が分かる.イオンのサ イクロトロン運動による並進エネルギーの 損失を考慮にいれると Fig. 2-8の質量分布は 妥当な結果と言える.

Fig. 2-8 の各クラスターのシグナルは一定 の幅をもつように見えるが,この幅は Si の 天然同位体(Si²⁸:92.23 %,Si²⁹:4.67 %, Si³⁰:3.10 %)分布によるもので理論値と実 測とほぼ完全に一致している.

第3章 実験装置と方法

3.1 FT-ICR 質量分析装置

3.1.1 実験装置概要

Fig.3-1 に本研究で用いる FT-ICR 質量分析装置と超音速クラスタービームソースの全体図を示す.

Fig. 3-1 FT-ICR 質量分析装置全体図

本実験装置は,FT-ICR 質量分析装置と,それに連結された超音速クラスタービームソースから構成されている.各装置には,ロータリーポンプと前段のターボ分子ポンプ(50 ℓ/s),ターボ分子ポンプ(300 ℓ/s)が電磁バルブを介して直列につないであり,背圧 3 × 10⁻¹⁰Torr の高真空に保たれている.

そして,各部に電離真空計が取り付けてあり,イオンゲージで各装置部の圧力(N₂:monitored) が分かるようになっている.さらに,超真空クラスタービームソースと FT-ICR 質量分析装置と の間にはゲートバルブが取り付けられており,ゲートバルブを閉めておけば,FT-ICR 質量分析装 置は真空に保ったまま,クラスターソースを開いてサンプルを交換することができるようになっ ている.また,ロータリーポンプと電磁弁との間はタイミングバルブを取り付けており,停電の 際チャンバー内へのオイルの逆流を妨げるようになっている.

次に Table 3-1 に各部品の製造元,型番などを示す.

部品	製造元	型番
真空チャンバー	日本真空株式会社	
ロータリーポンプ	日本真空株式会社	
ターボ分子ポンプ	日本真空株式会社	UTM-50, UTM-300

Table 3-1 FT-ICR 質量分析装置各部

3.1.2 超音速クラスタービームソース

Fig.3-2 にクラスターソース部の概略を示す.

約10気圧のヘリウムのガスラインにつながれたジョルダンバルブは、10Hzで開閉する事によ り、Waiting Room にヘリウムガスを流入させる.それに同期して、サンプルホルダーに取り付 けたサンプル(カーボン、シリコン等)に蒸発用レーザーを照射し、サンプルを蒸発させる.そ して、レーザー照射により蒸発したサンプル分子は Waiting Room 中でヘリウム原子と衝突する ことにより熱を奪われながらクラスターとなり、その後右方のノズルからガスと共に、超音速膨 張により冷却されながら噴射され、FT-ICR 質量分析装置に送られる.この時、クラスターを含ん だガスの終端速度は、1.8×10³ m/s であると見積もられている.

サンプルホルダーはアルミニウム製であり、炭素クラスターを生成させる場合、これに黒鉛の丸 棒を輪切りにしたものを真空用接着剤(トールシール)で接着した後、ガスが漏れないようにテ フロン製のリングをはめて使用するようになっている.サンプルの蒸気が Waiting Room に入る 穴(蒸発用レーザーもこの穴を通って、サンプルを蒸発させる.)は、サンプルホルダー側から見 ると平面上に開いていて、この平面にサンプルホルダーを押しつけながら回してレーザーがサン プルの同じ点ばかりに当たらない様にしてある.この時、平面にサンプルは接触せずテフロンリ ングのみが接触するようにしておく.クラスターを含んだガスは、ノズルから噴射された後放射 状に飛んでいくが FT-ICR 質量分析装置にある程度幅が絞られているクラスター群のみを導くた め、スキマー(2mm)を通し水平速度成分をもつクラスター群を取り出している.また、サンプル としては、カーボンばかりではなく、シリコン、銀、金等、様々な固体試料を取り付けることが できる.

Fig. 3-2 クラスターソース概略図

PSV バルブ

製造元 R. M. Jordan Company 仕様 パルス幅 50µs バルブの主要な直径 0.5mm

ノズルの仕様

形状 円錐形 広がり 10° 長さ 20mm スロート直径 1.5mm

3.1.3 ICR セル部

Fig.3-3 に FT-ICR の質量分析部 (セル部)の概略図を示す.

ICR セルは実際には Fig.3-3 のような,円筒を縦に四分割した形状であり,2 枚の励起電極 (Excitation:120°sectors)と,2 枚の検出電極(Detection:60°sectors)がそれぞれ対向するよう に配置されている.励起電極板には周波数平面で作成した任意波形を逆フーリエ変換して求めた 励起信号を,高速任意波形発生装置(LW420A:LeCroy)から入力し,検出電極板に流れる微弱な 電流を差動アンプへ通し,デジタルオシロスコープに取り込む.

また,四枚の電極板を間に挟むようにフロントドアとバックドアと呼ばれる円錐型の電極(開口 部 22mm)が配置されてい

る . ドア電極には , 一定の 電圧がかけられておりこ の電圧の壁を乗り越える ことのできるエネルギー を持ったクラスターだけ が中央の開口部を通って セル部に入ることができ る .

FT-ICR 質量分析装置はトラップを行うことにより,クラスターをある程度の時間(数分程度まで)セル内に保持することができる.この

ことを利用して質量分析だけでなくセル 内に保持したクラスターに対し様々な実 験(分解,反応,アニーリングなど)を行う ことが可能となっており,同じ質量分析装 置である TOF 型に比べて大きなアドバン テージを持っている.

3.1.4 6Tesla 超伝導磁石

Fig.3-4 に実験で用いている 6Tesla 超伝 導磁石の概略を示す.

超伝導磁石のタンクの中心より少し下 側に BoreTube が貫通しておりその周りに

超伝導コイルが存在している.そのコイルは一番内側の液体ヘリウムタンクの中にあり,超伝導 状態を保つため,常に全体が液体ヘリウムに浸かった状態で磁場を発生させている.FT-ICR 質量 分析装置では高分解能の質量スペクトルを得るために,磁場の均一度が強く要求される.よって 磁場の均一性を出すためにメインコイルの周りにシムコイルがいくつか設置してある.

液体窒素のタンクが液体ヘリウムタンクを取り巻くようにして存在していて,液体ヘリウムの 気化率を抑えている.さらにもう一つのタンクが窒素のタンクを取り巻くように存在している. このタンクは真空にすることで,外界からの断熱をはかっている.また,蒸発した液体窒素は冷 凍機により凝縮されるようになっており,そのため全体量はそれほど多くないものの,夏場にお いてもおよそ1~1.5ヶ月程度充填しなくとも良い.

3.1.5 光学系

光学系の配置図を Fig.3-5 に示す.

蒸発用レーザーの仕様は以下のとおりである.

Nd:YAG レーザー (2nd harmonic, 10Hz, 532nm) 製造元 Continuum

形式 Surelite1

レーザーや光学機器は防振台上に固定されており,FT-ICR 質量分析装置の所定の窓(石英製) に向けレーザー照射するように配置されている.ただし,防振台をあまり磁石に近づけると磁力 の影響で台が固定できないため,一部のプリズム,レンズはFT-ICR 質量分析装置の台上に設置 されている.YAG レーザーのパワーはフラッシュランプからQスイッチがはいるまでの時間によ り決定される.ただし,多少のばらつきがあるので,レーザーパワーは毎回パワーメーターにより計測している.本実験では蒸発レーザー径をサンプル上でおおよそ1mm,5~15mJ/pulseとなるようにしている.

3.1.6 制御・計測システム

Fig. 3-6 に制御・計測システムの概略図を示す

Fig.3-6 実験装置の制御・計測システム

GP-IB インターフェースを通して,任意波形発生装置とデジタルオシロスコープが IBM PC に 接続されている.パソコンは,事前にプログラミングされた波形を任意波形発生装置に出力する. 波形を受け取った波形発生装置は,その波形を励起電極板(Excite electrodes)に出力する.検 出電極板(Detect electrodes)からの出力は,差動アンプにより増幅してオシロスコープに送る.パ ソコンはオシロスコープにコマンドを出して,オシロスコープが差動アンプのアナログ信号をサ ンプリングして得た離散データを受け取る.なお,オシロスコープのトリガーは任意波形発生装 置から取っている.

ディレイパルスジェネレーターの各出力端子は,BNC ケーブルでトリガーをかけるべき各機器 に接続されていて(Fig. 3-7),事前にセットされたタイミングでパルス波を出力する.このパルス によってジョルダンバルブ,レーザー,減速管,アナログスイッチにトリガーがかかるようにな っている. パーソナルコンピューター 製造元 IBM 形式 2176-H7G 備考 GP-IB ボード装備

GP-IB ボード

製造元 National Instruments Corp.

形式 NI-488.2m

高速任意波形発生装置

製造元 LeCroy

形式 LW420A

最大クロック周波数 400MS/s

デジタルオシロスコープ

製造元 LeCroy

形式 9370L

最大サンプリングレート 1Gsample/sec

ディレイパルスジェレネーター

製造元 Stanford Research Systems, Inc 形式 DG535

作動アンプ

製造元 Stanford Research Systems,Inc 形式 SR560

次にディレイパルスジェレネーターによる各機器の時間的制約の内容を説明する.

レーザーにはフラッシュランプと Q スイッチの 2 つにパルスを出す必要がある.フラッシュラ ンプで YAG の結晶にエネルギーをためて,Q スイッチでレーザーが発振する.この際,フラッシ ュランプのディレイ時間により,レーザーパワーが決定される.

減速管は通常 0V であるが, クラスターイオンが減速管を通過している間にパルス的に-3V に電 圧が下がるように, ディレイジェネレーター2 からパルスを送っている.また, ディレイジェネ レーター1 とディレイジェネレーター2 とのタイミングを合わせるために,1から2にパルスを送 っている.

Fig. 3-7 ディレイパルスジェネレーター周りの接続

さらに、スクリーンドアには通常、10Vの電圧がかかっていてアナログスイッチにパルス信号が

Fig. 3-8 ディレイパルスジェネレーターのタイミングチャート

入った時のみスクリーンドアが OV になるようになっている.

以上のことをふまえて, Fig. 3-8 にディレイパルスジェネレーターによる制御のタイミングチャ ートを示す.

3.2 実験手順

以下に実験手順を示す.

- (1) サンプルをサンプルホルダーの先に真空用接着剤(トールシール)で接着し,クラスタソースの所定の位置に取り付け,ソースのフランジを閉める.
- (2) 真空系を作動させクラスターソース内を真空にする.
- (3) レーザーを立ち上げ,フラッシュランプのみ焚き続けてレーザーの結晶が熱平行に達す るまで待つ.
- (4) パソコン,オシロスコープ,ディレイジェネレーター,作動アンプ,任意波形発生装置 の電源をいれる.
- (5) ヘリウムガスボンベを開放し,レギュレーターによりジョルダンバルブにかかる背圧を 10気圧に調整する.
- (6) 反応ガスボンベと緩衝ガスボンベを開放し、レギュレーターによりゼネラルバルブにか かる背圧を調整する.
- (7) パワーメーターを用いてレーザーのパワーを調整する.
- (8) 測定を開始する.
- (9) F1 タイム, ジョルダンバルブに流す電流値,ドアのタイミング,レーザーパワー,ゼネ ラルバルブの開閉周期や反応ガスの流入時間などのパラメーターを変化させ,質量スペクト ルをとり,データを保存する.
- (10) 実験が終わったら, 各機器のスイッチを off にして電源を切る.また, 反応ガスのガス ラインを真空にする.

第4章 結果と考察

4.1 実験の概要

4.1.1 実験パラメーター

まず本実験装置においてクラスターを生成するにあたっての様々なパラメータを示す.

- (1) 蒸発用レーザーパワー
- (2) 蒸発用レーザー照射時間
- (3) バッファーガス(He)用パルスバルブに流す電流値
- (4) バッファーガス(He)用パルスバルブへのトリガーからレーザー照射までの時間
- (5) 減速管の電圧
- (6) フロントドア, バックドア両電極の電圧
- (7) スクリーンドアのタイミング

以上である.

(1)についてはサンプル試料を蒸発させるため,ある程度試料の種類によるが,4~30mJの間 でいくつかデータをとり,レーザーパワーの影響のおおまかな傾向をみるとともに,最も強度 の強いものを採用した.また試料の状態にも左右されるため,古くなってくると全般に強くす る必要がある.なお,一般的にはカーボン試料の場合,レーザーパワーが弱い方が大きめのサ イズのクラスターに成長しやすい.

(2)については生成するクラスター量に関わるが,本実験では5~10sに設定している.

(3),(4)については過去の実験結果よりいずれも waiting room 内の圧力をあげることであり,
その効果は同じような影響であることが分かっているため,今回の実験では主に(4)を変化させることにより waiting room 内の圧力を調節している.(3)は3.4~3.6kA(一部は3.8,4.0KA),
(4)は390µs~410µsである.

(5)はセル内に残したいクラスター群のだいたいの分布を決定するパラメーターであり,今回は 0V から 100V 程度の電圧をかけている.

(6)はクラスターを閉じこめるためのものであるが, Front door5V, Back door10V 固定である.

(7)は過去の研究からクラスター群の到達時間が分かっているため固定とした.

4.1.2 実験試料

本実験では,主に SWNT 生成に用いられる全く同一の試料(本研究室にて行われているレーザ ーオーブン法によるナノチューブ生成実験に用いられる試料と同一)と,新たに自作した試料を質 量分析対象として実験に用いている.以下が実験に用いた試料である.

1. 純炭素(C)試料

- 2. ニッケル(Ni) コバルト(Co) 炭素混合試料 (Ni, Co含有量 各 0.6 原子%)
- 3. ニッケル コバルト 炭素混合試料 (Ni, Co含有量 各1.2 原子%)
- 4. ニッケル コバルト 炭素混合試料 (Ni, Co含有量 各 6.0 原子%)
- 5. ロジウム(Rh) パラジウム(Pd) 炭素混合試料 (Rh, Pd 含有量 各1.0 原子%)
- 6. ロジウム パラジウム 炭素混合試料 (Rh, Pd 含有量 各 5.0 原子%)
- 7. ニッケル 炭素混合試料 (Ni 含有量 1.2 原子%)
- 8. ニッケル イットリウム(Y) 炭素混合試料 (Ni 含有量 4.2 原子%, Y 含有量 1.0 原子%)

これらの試料のうち,2・3・8 は粉末の金属酸化物(Ni₂O₃, Co₂O₃)と炭素を炭素系のバインダーで おおよそ 1200 にて焼結し,最終的に炭素原子と金属原子の存在数比が上記の含有量となるよう に生成したもの((株)東洋炭素)であり,4・5・6・7 は炭素と金属粉末を上記の含有量となるよう に混ぜ,600 気圧の圧力をかけ押し固めた後1200 にて焼結させた自作試料である.

なお過去の研究においては,本実験装置において,La,Y,Scらの 属遷移金属やCe,Gdなどのランタノイド元素,さらにはCaなどを含む試料を用いて実験を行っている.

4.2 実験結果·考察

4.2.1 純炭素試料からの生成クラスター

(a) 正イオンクラスター

Fig.4-1 が純炭素試料からレーザ蒸発法により生成され,ICR セル内にトラップされた正イオン カーボンクラスターの質量スペクトルである.C₃₄あたりを境に偶数個のカーボン原子が集まった クラスターが優位になり C₅₀ を超えると奇数個のクラスターは非常に少ない.これはカーボン原 子がすべて3つの結合手(sp²結合)を持つような閉じた多面体の構造であるためには,必ずそのカ ーボン原子数が偶数(C_{2n})になるためである[9].また二つ以上の五員環が隣接することがないとい う IPR(Isolated Pentagon Rule:孤立五員環則)を満たすようなサイズのクラスターは安定であり, マジックナンバーとしてしられる C₆₀ などは強いピークとしてみられる.

(b) 負イオンクラスター

Fig.4-2 が純炭素試料からの負イオンカーボンクラスターの質量スペクトルである. こちらで は奇数個のカーボンからなるクラスターも見受けられる.しかしながら,偶数個のカーボンから なるクラスターの方がピークが高く,奇数個のものが低いという明らかな偶奇性が見られ,偶数 個のカーボンクラスターが安定性の高いことが分かる.これは,正イオンクラスター同様,ケー ジ構造を構成していることによるものと考えられる.一方で,奇数個のケージ構造を持ったカー ボンクラスターに関しては完全に閉じきっていない,結合手が余ったような不完全なケージ構造 (ランダムケージ)を取っていると考えられる.ランダムケージ構造の詳細については,過去に 水素等の反応性により,明らかとなっている[10][11].

4.2.2 Ni/Co/C 試料からの生成クラスター

(a) 正イオンクラスター

Fig. 4-3 が Ni/Co を各 0.6%含む試料からの正イオンカーボンクラスターの質量スペクトル, Fig. 4-4 は純炭素試料から得られたスペクトルと比較したものである. C₂₀~C₄₅ あたりのサイズ のクラスターが多く生成しているのがわかる.

さらにこの領域の1部(C₃₇~C₃₉)を拡大した図を,C₃₈付近のスペクトルの様子を同位体分布から計算したシュミレーションの図と共にFig.4-5に示す.カーボンクラスター(ピンク)の他にNi, Co原子を1個含んだクラスター(緑),さらにNi,CoとH₂Oを1つずつ含んだクラスター(青)等が存在していることがわかる.

Fig.4-3 Ni/Co/C 試料からの正イオンクラスターの質量スペクトル

較

(M : Ni, Co)

Fig.4-5 Fig.4-4(b)の拡大図とシュミレーション図

(b) 負イオンクラスター

Fig.4-6 が Ni-Co-炭素混合試料(Ni,Co 含有量各 0.6%)からの負イオンクラスターのスペクト ルである.減速管の電圧を(a)3V,(b)5V,(c)13Vに設定しそれぞれ違ったサイズ領域のスペクトルを 示す.また Ni/Co/C 試料からは最大で C₁₅₀まで大きなクラスターが観測できた.純炭素試料から は C₇₀ あたりまでしか観測できず, Ni/Co の触媒効果の1つの現れであるといえる.

Fig.4-7 が C₄₀ ~ C₄₃ のスペクトルをさらに拡大したスペクトルと C₄₂ 付近のシュミレーション 図である.正イオンクラスターと同様 Ni,Co が配位したクラスター(緑)が確認できる.正イオン では C₂₀ ~ C₄₀ に金属が配位したメタルクラスターが確認されたが,負イオンでは C₂₀ ~ C₉₀ あたり まで確認できた.さらに大きいサイズのものについては,スペクトルの解像度の限界で不明であ る.

減速管電圧(a)3V, (b)5V, (c)13V

Fig.4-7 Fig.4-6(a)の拡大図とシュミレーション図

Ni/Co/C 試料は,含有量各 0.6%,1.2%,6.0%について実験を行った.

正イオンに関しては大きな違いは観測されなかった.一方負イオンでは,生成されるクラスター サイズに違いが出た.Fig.4-8 は触媒含有量 6.0%試料にて,ヘリウムガスを噴出するためにのジ ョルダンバルブに流す電流値を変えて得たスペクトルである.大きな電流を流せばガスが多く出 るためクラスターソース内の圧力が上がる.一般に圧力が高い方が大きなクラスターが生成しや すい.0.6%,1.2%の触媒含有量では C150 あたりまでの大きなクラスターが観測されたのに比べ, 図にあるように 6.0%に関してはせいぜい C50 までという結果だった.

なお,触媒含有量はNi/Coについては一般には各0.6%あたりが最適とされている.

Fig.4-8 Ni/Co/C(触媒各 6.0%)からの負イオンクラスターからのスペクトル ジョルダンバルブ電流値(a)3.6kA, (b)3.8kA, (c)4.0kA

4.2.3 Rh/Pd/C 試料からの生成クラスター

Rh-Pd を触媒としてカーボンナノチューブを生成すると,Ni/Co を触媒としたとき(およそ 1.3nm と比べ細いナノチューブ(およそ 0.8nm)が生成されることが報告されている[12]. (a)正イオンクラスター

Fig.4-9 が Rh/Pd/C 試料(触媒含有量各 1.0%)からの正イオンクラスターのスペクトルである. Ni/Co/C 試料と同様 C₂₀~C₄₅ あたりのクラスターが多く生成している.

Fig.4-10 は C₃₅ ~ C₃₈ あたりを拡大した図と C₃₇ 付近シュミレーションの図である.カーボンク ラスターに加え, Pd の配位したメタルクラスター(緑)が確認できる.このメタルクラスターは Ni/Co/C 試料の正イオンクラスターと同様, C₂₀ ~ C₄₅ あたりに金属の配位したものが確認できた.

Fig.4-11 は C₄₀ 以上のサイズのスペクトル, Fig.4-12 はその拡大図と C₅₉ シュミレーションの 図である.C₅₀ 以上になると Pd 付きのクラスターは見られず, ランダムケージと考えられる奇数 個のカーボンクラスターに Pd と H₂O の配位したものが確認される.

Fig.4-9 Rh/Pd/C 試料からの正イオンクラスターの質量スペクトル

Fig.4-11 Rh/Pd/C 試料からの C40~C110の正イオンクラスターの質量スペクトル

(b)負イオンクラスター

Fig.4-13 が Rh/Pd/C 試料からの負イオンクラスターのスペクトルである.Ni/Co/C 試料からは C150 付近までという大きなサイズのクラスターが観測されたが,Rh/Pd/C 試料からは C70 付近ま でのサイズしかスペクトルを得られなかった.

Fig.4-14 がそれを拡大した図と C₄₇ 付近のシュミレーションの図である.負イオンでも正イオンと同じくメタルクラスターが生成されている.

(c)触媒含有量による違い

Rh/Pd/C 試料は, 含有量各 1.0%, 5.0%について実験を行ったが, 全体的な傾向の違いはあま り見られなかった.

4.2.4 Ni/C 試料からの生成クラスター

Ni のみを触媒としてカーボンナノチューブを生成してもカーボンナノチューブが生成される. しかし, Co を混ぜた場合の方がその生成量は大幅に増えることや, Co のみを触媒とした場合レ ーザーオーブン法ではナノチューブは生成されないことから,それぞれの金属の違いについても 検討が必要である.

(a)正イオンクラスター

Fig.4-15 が Ni/C 試料からの正イオンクラスターのスペクトルである.Ni/Co/C 試料と同様 C₂₀ ~ C₄₅ あたりクラスターが多く生成している.

Fig.4-16はFig.4-15のC₃₄~C₃₇付近を拡大したものとC₃₆付近のシュミレーションの図である. カーボンクラスターに加え,Niの配位したメタルクラスターが確認でき,メタルクラスターは Ni/Co/C 試料・Rh/Pd/C 試料の正イオンクラスターと同様,C₂₀~C₄₀付近に金属の配位したもの が確認できた.

Fig.4-17 は C₈₀ あたりをピークに見たスペクトル, Fig.4-18 はそれの拡大図と C₆₄付近のシュ ミレーションの図である.奇数個のクラスターに注目すると, Ni と H₂O を含んだクラスターが 強く現れているのが確認できる.

(b)負イオンクラスター

Fig.4-19 が Ni/C 試料からの負イオンクラスターのスペクトルと C₃₃ 付近のシュミレーションの 図である.減速管の電圧を(a)0V, (b)3V に設定した.生成サイズについては Ni/Co/C 試料と同じ 程度の C₁₄₀ あたりまでが観測された.

Fig4-20 が C₃₂ ~ C₃₅ を拡大した図と C₃₃ 付近のシュミレーションの図である. Ni/Co/C 試料等 と同様,金属(Ni)が配位しているのがわかる.

Fig.4-19 Ni/C 試料からの負イオンクラスターの質量スペクトル

<u>4.2.5 Ni/Y/C 試料からの生成クラスター</u>

Ni/Y はアーク放電法での触媒として知られている.アーク放電法とレーザー蒸発法では使われる触媒に違いがあり,その違いがどこに起因するものなのかは検討の必要があり,生成機構を考える上でも重要である.

また,Yはフラーレンの中に内包される金属として知られる. (a)正イオンクラスター

Fig.4-21 が Ni/Y/C 試料からの正イオンクラスターのスペクトルである.C40~C75のサイズを見ているが,カーボンクラスターは C60以外はほとんど皆無であり,Y を1つ含んだクラスターがほとんどである.

Fig.4-22 は C₁₅~C₆₀までのサイズを見たものである.純炭素試料,Ni/Co/C 試料,Rh/Pd/C 試料,Ni/C 試料とはだいぶ様子が違うのが分かる.Fig.4-21 では Y を含んだクラスターは C₃₆ に Y を含むものからピークが強くなる様子が観測できる.Fig.4-22 でも同じ様子がみえることから,C₃₆Y から金属内包型のフラーレンになっていると推測でき,それよりサイズの小さいメタルクラ スターはカーボンクラスターの中というよりは外についていると予想される.

さらに本実験の他の試料でも見たように, C₂₀~C₄₀付近のメタルクラスターについて検討して みる.

Fig.4-23 は C₃₁ ~ C₃₄のサイズのクラスターのスペクトルと C₃₃ 付近のシュミレーションの図である.カーボンクラスターに加え,Y,Yと H₂O を含むクラスターが観測される.

Fig.4-24 は C₃₂ あたりをさらに拡大したスペクトルである.上記以外のクラスターも観測され るが,いくつものクラスターのピークが重なるとその同定は非常に困難である.しかしカーボン の質量に対応したスペクトルのピークの周期があることから,カーボンクラスターに何かが付い たものであることは予想できる.このようなスペクトルの様子は C₂₀ ~ C₄₇ あたりの質量サイズで 観測されており,前出の他の試料からの観測されるメタルクラスターの質量領域とほぼ一致して いる.

Fig.4-22 Ni/Y/C 試料からの正イオンクラスターの質量スペクトル

(b)負イオンクラスター

Fig.4-25 が Ni/Y/C 試料からの負イオンクラスターのスペクトルである.生成サイズは最大で C130 あたりまでが観測された.さらに詳しくみると,C20~C45 あたりとそれ以降のサイズ領域で 異なった様子になっている.

Fig.4-26 はサイズ領域 C₁₅~C₁₀₀の図である.C₄₅あたりを谷に2つピークの山があるのが分かる.

そこでそれぞれの領域を拡大検討していく Fig.4-27 と Fig.4-28 はそれぞれ C₂₀ ~ C₄₅の領域の 拡大図と C₂₉付近のシュミレーション図, C₅₀以降の拡大図と C₇₂付近のシュミレーション図であ る.C₄₅あたりまではカーボンクラスターに加え, Ni の配位したメタルカーボンクラスターが確 認される.C₄₅以降では Ni を含むものはあまりなく,Yを含むクラスターが強く観測される.

Fig.4-25 Ni/Y/C 試料からの負イオンクラスターの質量スペクトル

Fig.4-26 Ni/Y/C 試料からの負イオンクラスターの質量スペクトル(C15~C100)

4.2.6 試料の違いによる比較と実験結果のまとめ

(a) Ni/Co/C 試料と Rh/Pd/C 試料の比較

まず,正イオンクラスターについては,両者でほぼ共通した傾向が見られた.

Fig.4-29 が両試料の正イオンクラスターのスペクトルを比較したものである. どちらの試料か らも C₂₀~C₄₅ あたりのカーボンクラスターの量が多いこと,またそのクラスターに金属が配位し たメタルクラスターが観測された.

負イオンクラスターでは両者で大きな違いが出た.Fig.4-30 が両試料からの負イオンスペクト ルである.Ni/Co/C 試料では減速管の電圧を 3V,5V,13V と上げていくと最大で C150 付近までの 大きなサイズのクラスターが観測され,C20~C90 に金属の配位したものが観測されたが,Rh/Pd/C 試料では減速管電圧を上げ大きなサイズのクラスターを観測しようとすると信号がほとんど得ら れず,図にあるように減速管 3V で最大 C70 付近までのサイズしか観測されなかった.

また, Ni/Co/C 試料の触媒含有量各 6.0%のものでも最大 C₅₀ と大きなサイズのクラスターは観 測されなかった.

(b)Ni/Co/C 試料と Ni/C 試料の比較

Fig.4-31 に両試料からの正イオンスペクトルを示す.Ni/C 試料においても Ni/Co/C 試料同様 C₂₀~C₄₅あたリクラスター量は多く,そこに金属の配位したメタルクラスターが観測される.

両者の違いは C₄₅ 以上のサイズの奇数個クラスターに出た.Ni/C 試料からは奇数個クラスター に Ni, H2O が配位したものが観測され,C₁₂₀NiH₂O あたりまで確認できた.

負イオンに関しては Co 付きのメタルクラスターが観測されない以外は大きな違いはなく Ni/C 試料からも大きなサイズ(~C130)のクラスターが観測された.

(c)Ni/Co/C 試料と Ni/Y/C 試料の比較

Fig.4-33 に両試料からの正イオンスペクトルを示す.Ni/Y/C 試料においても C₂₀~C₄₅ あたりに金属の配位したメタルクラスターが観測される.

また負イオンでは, Ni/Y/C 試料で観測されるメタルクラスターが C₄₅ 付近までは Ni, それ以降 は Y が配位したものが主であった.

(d)まとめ

正イオンクラスターでは金属触媒を含む試料からのスペクトルの共通点として,どちらも炭素のみの試料に比べ,C20~C45 あたりのクラスターが多いこと挙げられ,触媒効果の一つの表れであるといえる.またどの試料からもこの領域のカーボンクラスターに金属が配位したメタルクラスターが生成されているのが確認された.

Bowers らの報告によれば,正イオンの場合,C10までのクラスターでは直鎖状のものが生じ, C6から C40位までは単環状のものが安定となる.さらに,C20から C40位の間では平面二環状のものが,サイズ数 30台では三環状のクラスターが存在し,C30からは,フラーレン状のクラスター が観測され始め,C50以上では,圧倒的にフラーレン構造が主成分になる[13].

また, Bowers らと Jarrold らの研究によれば,単環状や多環状の炭素クラスターは,ヘリウム などのバッファー気体との衝突による加熱により,容易にフラーレン構造に転移することが報告 されている[14][15].

さらに, Rh/Pd/C 試料, Ni/C 試料からは, C₅₀以降のサイズのクラスターにはランダムケージ 状になっていると考えられる奇数個のカーボンクラスターに金属(Ni,Pd)と H₂O が配位している ことも確認された. 純炭素試料からはそのサイズのクラスターはほとんど見らない.

これらのことから,金属原子はカーボンクラスターが閉じたフラーレン構造をとらないよう何 らかの影響を及ぼし,また開いたランダムケージのクラスターに配位しているものと考えられる.

負イオンに関しては試料により大きな違いが見られた.

生成されるクラスターサイズについて, Ni/Co/C 試料(触媒各 0.6%, 1.2%), Ni/C 試料, Ni/Y/C 試料からは最大で C₁₃₀~C₁₅₀ あたりまでの大きなクラスターが観測できたが, 純炭素試料からは C₈₀ あたり, Ni/Co/C(触媒各 6.0%)試料, Rh/Pd/C 試料からは C₇₀ あたりまでしか観測できなかった.

このことから,金属触媒原子はその種類,濃度がレーザー蒸発からカーボンクラスター形成という段階から大きな影響を及ぼしているといえる.
4.2.7 金属触媒効果と成長モデル

Fig.4-35 に本研究の実験結果から考えられる,カーボンナノチューブ成長過程の図を示す. 金属原子の影響でカーボンクラスターは閉じて安定なフラーレン構造になりづらくなり,開い た構造のクラスターが多く生成される.できたクラスターに金属原子が付くのか,金属原子に炭 素原子が集まるのかまたは他の形成過程があるのか議論の余地はあるが,カーボンクラスター生 成段階から金属原子の影響が色濃く出ていることから,できたクラスターに金属原子が付くとは 考えにくい.

さらにナノチューブの前駆体であるクラスターの大きさがチューブの直径をほぼ決定すると考 えられ、その際生成されるクラスターサイズは金属触媒の種類、濃度に大きく左右される、Ni/Co/C 試料の場合チューブを作る際に最適とされる触媒含有量 0.6%だと、金属原子は炭素原子約 170 個に一個であるのに対し、6.0%では約 16 個に 1 個である.金属原子の配位したメタルクラスタ ーからナノチューブへと成長するとすると、ナノチューブの長さ(数µm)から考えて金属原子はも っと少なくていいようにも思われるが、金属原子がすべてナノチューブの成長に関わっていると も考えづらく、金属原子のみのクラスターも存在していると思われるため、0.6%付近の濃度が金 属原子が多すぎず、少なすぎない適正値なのだと思われる.

Fig.4-35 ナノチューブの成長

第5章 結論

5.1 結論

本研究により以下の知見を得た.

- (1) 金属触媒効果によりフラーレン構造になりきらないサイズのカーボンクラスターが多く生 成することが明らかとなり、フラーレン形成を防ぐ効果があることが明らかとなった.
- (2) 正イオン,負イオンともに主にフラーレン構造になっていないクラスターに金属が配位していることが分かった.
- (3) 負イオンにおいては、金属触媒の種類・濃度がクラスターサイズに影響を及ぼしていることが分かった.
- (4) 試料による負イオンクラスターのサイズの違いとナノチューブの直径の対応から、ナノチューブ成長の初期段階のクラスターサイズがその直径を決定していることが明らかとなった。
- (5) ナノチューブの成長過程の解明への知見を得ることができた.

5.2 今後の課題

・今回の実験はすべてレーザーオーブン法,アーク放電法によりカーボンナノチューブを生成 するのに使われる金属触媒を用いたが,全くナノチューブを生成しない金属からのクラスターの 様子との比較が必要である.

・スペクトルの強度は試料の状態により大きく変わる.試料を付け替える度に様々なパラメータを微調節する必要があるが,常に同じ条件でのデータでの議論をよりしやすいものにするために試料の作成法や取り付け方法等には改善の余地がある.

・今回は正イオン,負イオンクラスターを観測したが,ナノチューブは中性クラスターから成長するとみられており,中性クラスターをレーザーによりイオン化させる手法での実験,検討が必要である.

・アーク放電法とレーザーオーブン法での金属触媒の違いからもその成長機構がそれぞれで異なっていると予想されるが,今回の Ni/Y/C 試料の実験からはその点での情報は得られなかった。 今回は Ni/Y/C 試料もレーザー蒸発させているため,アーク放電法とはクラスターの発生の仕方が 異なる.FT-ICR でアーク放電法,レーザーオープン法両方についてのナノチューブの成長過程を 議論をより妥当なものにするためには,アーク放電法にも対応した実験環境を整える必要がある.

・FT-ICR は超伝導磁石を使用しているため,液化ヘリウム,液化窒素により冷却しているが, その取り扱いが難しく,冷凍機のトラブルなどで実験を中断せざるを得ない状態にもなった.実 験効率をあげるためにもその管理,保持の仕方の改善は急務であると思われる。

参考文献

[1] H.W.Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, *Nature*, **318**, 162 (1985)

- [2] W.Kratschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman, Nature, 347, 354 (1990)
- [3] S.Iijima, Nature, 354, 56 (1991)
- [4] 飯島澄男, "カーボンナノチューブの挑戦", 岩波書店 (1999)
- [5] 齋藤 弥八, 坂東 俊治, "カーボンナノチューブの基礎", コロナ社
- [6] S. Maruyama, L. R. Anderson and R. E. Smalley, *Rev. Soc. Instrum.*, **61**-12 (1990), 3686-3693
- [7] A. G. Marshall and F. R. Verdun, "Fourier Transform in NMR, Optical, and Mass Spectrometry",

Elsevier, Amsterdam (1990)

- [8] 丸山 茂夫, 吉田 哲也, 河野 正道, 日本機械学会論文集(B 編), 65-639, (1999), 3791-3798
- [9] S.Maruyama and Y. Yamaguchi, *Chem. Phys. Lett.*, **286**-3, 4, 343(1998)
- [10] 池田博行, "FT-ICR によるメタルフラーレンの化学反応",卒業論文, (2000)
- [11] 丸山茂夫, "金属内包フラーレンと SWNT の前駆体としての金属炭素混合クラスター", 第19 回フラーレン総合シンポジウム, 2000, 43-43 頁.
- [12]H.Kataura, A.Kimura, Y.Ohtsuka, S.Suzuki, Y.Maniwa, T.Hanyu and Y.achiba, Jpn.J.Appl.Phys. 37, L616 (1998)

[13]N.G.Gotts, G.von Helden and M.T.Bowers, Int.J.Mass Spectrom.Ion Proc., 149/150, 217 (1995)

- [14]G.von Helden, N.G.Gotts and M.T.Bowers, Nature, 363, 60 (1993)
- [15] J.Hunter, J.Fye and M.F.Jarrold, Science, 260, 784 (1993)

謝辞

今回の卒業論文執筆にあたり,お忙しい中常に笑顔で指導して下さった丸山助教授に心よりお 礼申し上げます.

研究会では様々なためになるアドバイスをいただいた,庄司教授と庄司研究室の皆様,ありが とうございました.

右も左も分からない僕に付き添い,多くのアドバイスをいただくとともに、実験に付き合って くださった井上修平さんには感謝の気持ちで一杯です.FT-ICRの世話と博士論文,頑張ってくだ さい.

多くの助言と楽しいおしゃべりを提供してくださった丸山研究室の面々,博士課程の木村さん・渋田さん(最近僕も腰がいやな感じで痛いのですが,どうしたらいいでしょう?)Choi さん,修士課程の小島さん・吉野さん・千足さん・手島さん,共に卒論と戦った4年の宮内君・谷口君・山本君,短い間ではありましたが楽しかったです.ありがとうございました.

また、修士論文でお忙しい中,試料製作に力を貸してくださった北沢研究室の末綱さん,あり がとうございました. <u>通し番号 1-80 ページ 完</u>

卒業論文

<u> 平成 14 年 2 月 8 日提出</u>

00241 広川 文仁