カーボンナノチューブのバイオ

- 1. 細胞との相互作用・細胞毒性・細胞内消化・細胞外排出
- 2. 動物体内での挙動(蓄積、排出)
- 3. 動物毒性試験
- 4. バイオ応用

細胞内部への取り込み機構

エンドサイトーシス

巨大分子を取り込む経路はクラスリン被覆ピットと小胞による"受容体を介したエンドサイトーシス"細胞膜上のカベオラという窪み(直径~50nm)を介して取り込まれるカベオラ依存性エンドサイトーシス
 ファゴサイトーシス

多核白血球、単球、マクロファージなどによる細菌や細胞の死骸などの取り 込み。小胞はそのままリソソームと合体し、物質を加水分解酵素により 消化する。

・ピノサイトーシス

食細胞以外の細胞でも発達した機構の一つであり、細胞外液を細胞質に取り込むことで、細胞に必要な水溶性の栄養分を取り込む

・ピアシング

MWNTで見つかった現象。細胞膜中を拡散して中へ入る。

Incubation condition: 37°C, 5 % CO₂

Zhang et al. ACSNano 2007

*BSA labeled by Alexa-Fluo-488.

Confocal microscope images of SWNHox-BSA-AF (excitation 488 nm, emission detected at 510 nm)

SWNHoxから遊離しているBSA-AFがいないことを確認。

Zhang et al. ACSNano 2007

細胞内へ取り込まれたSWNHox-BSA-Fluoro488。 レーザー共焦点顕微鏡による観察

Confocal microscope images.

fluorescence image

DIC image

superposed image

Zhang et al. ACSNano 2007

Cell: HR460(Human lung cancer cell) SWNH-Alexa Fluor 488

Differential interference contrast

4℃でのインキュベーションした時には、SWNHox-BSAは 細胞内へ取り込まれなかった。 従って、H460細胞のSWNHox取り込み機構は、エンドサイ トーシスである。

Zhang et al. ACSNano 2007

SWNHox-BSA-AFを取り込んだHR460細胞の数 をFlow cytometry を用いて数える。

Amino nanohorns: Preparation, dispersion, and internalization into cells. Isobe et al. *Angew. Chem. Int. Ed.* **45**,6676 (2006).

SWNHoxに分散剤コーティングを行わないと、PBS中で 均一分散しない。細胞の内部には、ほとんど入らない。 外壁に付着する傾向がある。

CDDP@SWNHox

Ajima, Murakami ACS Nano 2009

培地 0.1 mg/mL 1 mg/mL

b)

Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation *Kagan et al. Nature Nanotech. 2010*

24h

hMP: human myeloperoxidase

Myeloperoxidase: 好中球 のみに存在する酵素。過酸 化水素(H2O2)と塩素イオン (Cl-)から次亜塩素酸 (HOCI)を産生。酵素反応に よって生じたHOCIは、高い 殺菌効果をもつ。

好中球:白血球のひとつで、食細胞。細 胞外寄生生物を退治。 *Kagan et al. Nature Nanotech. 2010* Dynamic light scattering showing multiple smaller peaks corresponding to biodegraded nanotubes.

In hMPO and H_2O_2 after 12h incubation: (GC-MS measurements) short-chain tri-carboxylated alkanes, alkenes, molecular ions of dicarboxylated short-chain, mono-carboxylated products

Kagan et al. Nature Nanotech. 2010

Raman spectra (excitation, 633 nm) of ethanol-dried nanotubes (black) and (hMPO and H2O2)-treated nanotubes, showing loss of the characteristic G-band, followed by appearance and decay of the D-band over time

Vis-NIR spectra showing loss of M1 and S2 bands as nanotubes are degraded in the presence of hMPO and H2O2.

TEM observation: SWNTs were degraded. 24h

Nanotubes

Nanotubes

Nanotubes hMPO H_2O_2

Nanotubes sodium Hypochlorite (次亜塩素酸ナトリウム)

Kagan et al. Nature Nanotech. 2010

Nanotubes

Nanotubes/hMPO/H2O2

Phosphate buffered saline

KaganらによるSWNTの生体内分解実験

条件付き(好中球を使用 あるいは IgG使用)でのSWNT分解。 分解は細胞実験でしか確認していない。

生体内では、マクロファージにより貪食される。 マクロファージのリソソームではH₂O₂による分解が主流。 H₂O₂は、HOClほど強い作用はない。 よって、実際に生体内で分解するかどうかは、確認必要。

カーボンナノチューブのバイオ

- 1. 細胞との相互作用・細胞毒性・細胞内消化・細胞外排出
- 2. 動物体内での挙動(蓄積、排出)
- 3. 動物毒性試験
- 4. バイオ応用

生体内のCNT分布をどうのように計測するか?

- ・ラベルを付加
 - 放射性元素
 - ¹³C
 - 蛍光物質
 - MRI
- SWNTの場合
 - SWNTの蛍光
 - SWNTのラマン散乱光
- ・チューブ内にラベルを内蔵

Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers

Singh et al. PNAS 2006

Singh et al. PNAS 2006

Singh et al. PNAS 2006

DTPA–SWNT from supernatant of urine

DTPA–MWNT in the supernatant

DTPA–MWNT in the precipitate

Near-IR SWNT fluorescence images in liver tissue

rabbits 24 h after i.v. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy Zhuang Liu* PNAS 2008

0.1 mg/ml

Zhuang Liu* PNAS 2008

The SWNT concentrations in most organs are below detection limit.

three to four mice per group

Raman mapping images of liver slices

3 months 0.1 mg/ml 200 μl(?)

0.5 mg/ml 200 μ l 3 mice

In vivo MRI imaging of magnetite-attached SWNHox

 T_2^* -weighted images

Conc. =0.5 mg cm⁻³ in PBS Dose amount = 0.5 cm^3

Miyawaki et al. Adv. Mater. 2006.

New Label : Gd₂O₃ Nanoparticles Embedded in SWNHs

Bio distribution of $Gd_2O_3@SWNH$ Method: Internal organs $\rightarrow Dry \rightarrow Combustion$ $\rightarrow Ash in HCI \rightarrow ICP-AES elemental analysis$

Bio distribution of Gd₂O₃@SWNH

Miyawaki, Matsumura, et al. ACS Nano 2009

Histological observation of liver

10µm

ACS Nano 2009

Ultrastructural observation: Gd₂O₃@SWNH in liver

SWNHs in Phagolysosome

H, Hepatocytes; N, Nucleus; D, Perisinusoidal space of Disse En, endothelial cell; Kupffer cell *Iyawaki et al. ACS Nano 2009*

Are these SWNHs ?

No Gd was found \rightarrow No SWNHs

カーボンナノチューブのバイオ

- 1. 細胞との相互作用・細胞毒性・細胞内消化・細胞外排出
- 2. 動物体内での挙動(蓄積、排出)
- 3. <u>動物毒性試験</u>
- 4. バイオ応用

カーボンナノチューブの毒性

Kostarelos, Nature Bio 2008

MWNT L: 1-20 μ m, d: 50-150 nm, Dose 3 mg, 1.p. Tween-80 in methylcelulose 結果:中皮腫(p53+/-マウス) (Takagi et al, Toxicol Sci. 2008)

MWNT

L: 15-20 µm or tangled, d: 50-150 nm, Dose 50 µg, 1.p. BSA coated in saline Long MWNT: 炎症、肉芽腫 Short (<10µm) MWNT: 中皮に影響なし (Poland, et al, Nature Nanotech, 2008)

Functionalized MWNTs

Kostarelos Nature Bio 2008

Long Fiberに対する中皮細胞の応答 "Peritoneal Macrophages"

(出典:石綿・ゼオライトのすべて)

図2. 2-1 スタントンーポッツの仮説

http://www.env.go.jp/recycle/report/h18-01/chpt2.pdf

屈折率:1.680 倍率:×100 (写真提供:中外テクノス株式会社) (2) 繊維状物質の有害性*1 スタントンーポッツの仮説(図2.2-1 参照)に示すとおり、アスベストに 限らず、

細長い繊維は発がん力があり、特 に繊維径0.25µm で、長さ20µm 程 度が最大の発が

ん性に寄与するということが認識されるようになった。なお、繊維径が 4.5µm 以上の

繊維状物質については、一過性で あるが皮膚障害があることに留意 しておく必要もある。

(出典:石綿・ゼオライトのすべて)

*1::繊維状物質測定マニュアル、 (社)日本作業環境測定協会

http://www.env.go.jp/recycle/report/h18-01/chpt2.pdf

SFA, foreign body giant cells (FBGC

Peritoneal Macrophages

NTlong2 in FBGC

NTlong2 (diameter165 nm, length r <56 μm)

NTtang1 (diameter 15 nm, length 1-5 μm)

Poland, "Donaldson (Nature Nanotech 2008)

SWNTの毒性

Zhuang Liu* PNAS 2008

i.v., Dose: 0.1 mg/ml (200 μ l, ~0.1 mg/kg), 3 months, 30 mice

No toxic side effects were found:

- ≻Necropsy (解剖検査)
- ≻Histology (組織学的検査)
- ▶Blood chemistry measurements(血液化学検査—肝臓の酵素)

カーボンナノホーンの毒性

<u>修飾カーボンナノホーン:動物実験から毒性は見つかっていない</u>

- ◆ マウス、尾静脈投与、投与量6 mg/kg、期間2, 4, 26週。
 ◆ 炎症を惹起しなかった:
 - 1. 組織学的検査
 - 2. 血球検査 (単球、好中球、好酸球、リンパ球、その他)
 - 3. サイトカイン測定 (IL6, TNF-α、など)

カーボンナノチューブのバイオ

- 1. 細胞との相互作用・細胞毒性・細胞内消化・細胞外排出
- 2. 動物体内での挙動(蓄積、排出)
- 3. 動物毒性試験
- 4. <u>バイオ応用</u>

Drug Delivery with Carbon Nanotubes for In vivo Cancer Treatment

Zhuang Liu, Cancer Research 2008

Dispersion in PBS sonication of SWNTs in a water solution of phospholipid-PEG

Zhuang Liu, Cancer Research 2008

細胞毒性、4T1細胞 50% Cell viability inhibition (IC50)、3日

230 nm PTXの光吸収

4T1 breast cancer mice model (皮下移植)、i.v.投与

Blood circulation of SWNTs and PTX.

SWNT – by Raman

PTX--- Scintillation counting of ³H radioactivity in blooddata

Zhuang Liu, Cancer Research 2008

タキソール:パクリタキセルの商品名

PTX biodistribution measured by scintillation counter.

TumorにDeliveryされるPTX量は、少ない。しかし、 SWNTを使うとPTXの血中滞留時間は長くなる。

Zhuang Liu, Cancer Research 2008

PTX dose (5 mg/kg)

SWNT biodistribution measured by Raman spectroscopy

肝臓や脾臓にたまったSWNTからPTXが徐放されて、血中のPTX量が保たれている。これで、SWNT-PTXの高い抗腫瘍効果が出ているらしい。

