

Rosenbluth weight W:

 $W = \prod_{i=1}^{N} \sum_{j=1}^{k} \exp[-\beta u_{ij}]$

4. Continue with step 2 until the complete chain is grown (${\it N}$ monomers)

Note: u_{ij} is the energy of trial direction j for monomer i

- Generate chains using the Rosenbluth scheme
- Accept/Reject a new configuration of a chain in such a way that detailed balance is obeyed
- Split potential energy into "bonded" (bond-stretching, bending, torsion) and "non-bonded" (i.e. Lennard-Jones or Coulombic) interactions
- Generate (k) trial positions according to **bonded** interactions (unbranched chain: l, θ, φ are independent)
- $U_{\text{bonded}} = U_{\text{stretch}}(l) + U_{\text{bend}}(\theta) + U_{\text{tors}}(\phi)$
- $P(l) \sim dl l^2 \exp[-\beta u(l)]$
- $P(\theta) \sim d\theta \sin(\theta) \exp[-\beta u(\theta)]$
 - $P(\phi) \sim d\phi \exp[-\beta u(\phi)]$

Adsorption and Diffusion of Guest Molecules in Zeolites and MOFs

Separation of Water/Alcohol Mixtures (2)

- Hydrophobic, high silica DD3R membrane (NGK insulators, Japan)
- Experimentally: $\alpha_{w,e}=1500 \text{ and } \alpha_{w,m}=9$
- Membrane flux follows from Maxwell-Stefan equations:

$$N_i \approx -\frac{\rho_z D_{iM}}{\delta} \left[\left< \Gamma_{ii} \right> \Delta q_i + \left< \Gamma_{ij} \right> \frac{q_{iat}^{2at}}{q_j^{2at}} \Delta q_i$$

L

- Quantitative force field for water/alcohols in all-silica zeolites?
- Separation mechanism?

Thijs J.H. Vlugt [37] Adsorption and Diffusion of Guest Molecules in Zeolites and MOFs Studied by Molecular Simulati

Adsorption Isotherms of Methanol on DDR-type Zeolite

Adsorption Isotherms of Ethanol on DDR-type Zeolite

 $D_{\alpha,\text{self}} = \frac{1}{2N} \lim_{t \to \infty} \frac{d}{dt} \left\langle \sum_{i=1}^{N} \left(r_{i\alpha} \left(t \right) - r_{i\alpha} \left(0 \right) \right)^2 \right\rangle$

Ī

Ĩ

Thijs J.H. Vlugt [40] cules in Zeolites and MOFs Studied by Mol Adsorption and Diffusion of Guest Mole

Thijs J.H. Vlugt [39]

Adsorption and Diffusion of Guest Molecules in Zeolites and MOFs Studied by Molecular Simulation

Intermezzo: Self Diffusion

Dynamically Corrected Transition State Theory

Thijs J.H. Vlugt [41] Adsorption and Diffusion of Guest Molecules in Zeolites and MOFs Studied by Molecular Simi

0

Ĩ

t ≣

106

105

104

103

 10^{2}

101 0.0

 $f_w + f_a / Pa$

Thijs J.H. Vlugt [42] Adsorption and Diffusion of Guest Molecules in Zeolites and MOFs Studied by Molecular Simulation

Permeation of Pure Components: Water/Alcohols

D^{S}	$[m^{2,s^{-1}}]$		$3.61 \pm 0.01 \times 10^{-10}$	$6.10 \pm 0.04 \times 10^{-10}$	$5.89 \pm 0.04 \times 10^{-10}$		$3.36 \pm 0.01 \times 10^{-11}$	$3.55 \pm 0.01 \times 10^{-11}$	$4.80 \pm 0.02 \times 10^{-11}$		$< 3 \times 10^{-14} *$	$< 3 \times 10^{-14} *$	$< 3 \times 10^{-14} *$
~perm	${}^{q_i}_{mol \cdot kg^{-1}}$]		0.004	0.003	0.002		0.09	0.05	0.03		0.23	0.15	0.10
feed	q_i [mol·kg ⁻¹]	-	0.87	0.97	1.11	anol	2.46	2.39	2.36	lor	1.49	1.42	1.39
F	[K]	Wate	348	360	373	Meth	348	360	373	Ethar	348	360	373

* Free energy barrier for diffusion $\Delta F \approx 17 \; k_B T$

Thijs J.H. Vlugt [43] Adsorption and Diffusion of Guest Molecules in Zeolites and MOFs Studied by Molecular Simulation

Permeation of Water/Methanol and Water/Ethanol Mixtures

component	$N_i^{\rm exp}$	$N_i^{ m pred}$	$y_i^{\text{perm,exp}}$	$y_i^{\mathrm{perm, pred}}$
	$[mol \cdot m^{-2} \cdot s^{-1}]$	[mol·m ⁻² ·s ⁻¹]	-	Ξ
methanol/wa	ater			
water	0.023	0.40	0.63	0.69
methanol	0.013	0.19	0.37	0.31
methanol/wa	ater			
water	0.015	0.25	0.996	0.998
ethanol	0.59×10^{-4}	4.9×10^{-4}	0.004	0.002

J. Kuhn, J.M. Castillo, J. Gascon, S. Calero, D. Dubbeldam, T.J.H. Vlugt, F. Kapteijn, J. Gross, J. Phys. Chem. C, 2009, 113, 14290-14301.

J.M. Castillo, T.J.H. Vlugt, S. Calero, J. Phys. Chem. C, 2008, 112, 15934-15939.

Thijs J.H. Vlugt [47]

Adsorption and Diffusion of Guest Molecules in Zeolites and MOFs Studied by Molecular Simulatio

Thijs J.H. Vlugt [46]

and MOFs Studied by Molecular Simulatic

les in Zeolite:

Adsorption and Diffusion of Guest Moleci

Thijs J.H. Vlugt [45]

high sensitivity to values of framework charges (differences of 2%)

Adsorption of Water in Cu-BTC

Adsorption and Diffusion of Guest Molecules in Zeolites and MOFs Studied by Molecular Simula

(on/sa

•

٠

5.0

8.0

4.0

J.M. Castillo, T.J.H. Vlugt, S. Calero, J. Phys. Chem. C, 2008, 112, 15934-15939.

J.M. Castillo, T.J.H. Vlugt, S. Calero, J. Phys. Chem. C, 2009, 113, 20869-20874.

Adsorption and Diffusion of Guest Molecules in Zeolites and MOFs Studied by Molecular Simulation Thijs J.H. Vlugt [49]

Many thanks to (in random order)

- D. Dubbeldam (University of Amsterdam)
- S. Calero (University Pablo de Olavide, Sevilla, Spain)
- B. Smit (Berkeley)
- R. Krishna (University of Amsterdam)
- S. Ban (Utrecht University)
- J.M. Castillo Sanchez (TU Delft)
- J. Kuhn (TU Delft)
- J. Gross (TU Delft)
- F. Kapteijn (TU Delft)

- B.P. Tighe, A.R.T. van Eerd, T.J.H. Vlugt Phys. Rev. Lett. (2008), 100, 238001
- http://www.youtube.com/watch?v=6m4rsOOceoo
- A.R.T. van Eerd, W.G. Ellenbroek, M. van Hecke, J.H. Snoeijer, T.J.H. Vlugt Phys. Rev. E. (2007), 75, 060302(R)

Self-Assembly of Nanocrystals

P.Z. Schapotschnikow, T.J.H. Vlugt, J. Chem. Phys., 2009, 131, 124705 P.Z. Schapotschnikow, R. Pool, T.J.H. Vlugt, Nano Letters, 2008, 8, 2930-2934

Adsorption and Diffration of Guest Moleculae in Zeolines and MOFE Studied by Molecular Simulation Thijs J.H. Vinge [33] Modelling of Lumminescence Decay Curves for Downconversion

Thijs J.H. Vlugt [52]

Better Force Field Fitting for VLE Computations

nd MOFs Studied by Mole

Adsorption and Diffusion of Guest Molecules in Zeolit

Prof. Joachim Gross and Thijs van Westen

Thijs J.H. Vlugt [54] Adsorption and Diffusion of Guest Molecules in Zeolites and MOFs Studied by Molecular Simulation Questions?

