

SPECTROSCOPY OF 1D MATERIALS IN SINGLE-WALLED CARBON NANOTUBES

H. Kuzmany

Fakultät für Physik der Universität Wien, Wien, A

Content

THE SQUEEZED SPACE INSIDE Filling the tubes

MAGNETIC PEAPODS ESR, rotor state, tuning the pea distance

DOUBLE-WALLED CNTs: Pair spectra, catalytic growth

¹³C SWCNT: NMR, spin gap, Tomonaga-Luttinger behavior

FeCp₂@(10,10)

Co-operations

U Wien TU Budapest Oxford U IFW Dresden AIST Tsukuba U Erlangen U Paris Sud MPI Dresden U Sofia U Bologna

1

The squeezed space inside

FAMILY BEHAVIOR FOR RBM RAMAN RESONANCES

RAMAN SCATTERING FROM SWCNTs

14 Raman active modes (8 for zig-zag, armchair)

DOUBLE RESONANCE SCATTERING FOR D-LINE AND G'-LINE

Double resonance for graphite

Triple resonance for nanotubes

DISPERSION OF G-LINES

Vienna Ab initio Simulation Package, VASP

Filling SWCNTs

FILLING SINGLE_WALLED CARBON NANOTUBES

A Opening the tubes

exposure to air at 450-650 0C, 2 h re-closing is possible by heating in vacuum at 800 0C, 6 h

B The filling processes

Filling from	Process characterization	Examples
Vapour phase	Clean but thermal stability of filler is required	C60, C70, metallofullerenes
Liquid phase (melt) (Solution)	Simple if melt exists Medium filling temperature Low temperature but solvent may also enter	Alkali halides, ferrocene Fullerenes, N@C60, C59N
Supercritical CO ₂	Clean, low filling temperature but needs special equipment to handle sc CO_2 , long filling times	Functionalized fullerenes

1D MATERIALS @ SWCNTs

Classical peapod

Hybride filling: C60-Fel₂

J. Sloan (2002)

K. Suenaga IWEP2006

Metallofullerenes

99°s

T. Okazaki (2005)

Doped Peapod

S. lijima (2004)

Fig.6.32

K. Suenaga WONTON 2005

EXPERIMENTAL OBSERVATION OF PEAPODS

Raman scattering

Filling with magnetic peapods (N@C₆₀, C₅₉N)

Transformation to DWCNT

R. Pfeiffer, 2003

Magnetic peapods

LINEAR SPIN CHAINS WITH C₅₉N@SWCNTs

DYNAMICS OF THE SPIN CARRYING STATE

Heterodimer/monomer

0.8

0.6

0.4

0.2

0.0

250

heterodimer total

0,20

1

Linewidth (mT) C₅₉N:C₆₀@SWCNT 0,15 3 0,10 Ground state: spins at 0,05 0,00 200 220 240 260 280 300 320 340 Excited state: spins at T (K) $C_{59}N$ 0,12 a) -> hyperfine triplet 0,11 ∆H (mT) F=E-TS 0,10 $I_{hetero}/I_{total} = 1/(1 + exp^{\Delta F/k_BT})$ 0,09 E_{binding}=2800 K, 0,08 b) $S_{2} - S_{1} = 9k_{B}$ $\stackrel{(L)}{\overset{\text{moh}}{\to}} 0,04$ 0,02 300 350 400 450 0,00 0 50 100 150 200 250 T (K) F. Simon, PRL 2006 Temperature (K

Monomer: motional narrowing!

Heterodimer: Korringa **behavior**

60

260 (nsec) 460 (nsec) 260

660 860

300

ON TRANSFORMATION TO DWCNT: IS N INSERTED INTO THE INNER-SHELL TUBE?

1

Double-walled carbon nanotubes, pair spectra

The two cluster of lines originate from the same inner tube ((6,5), (6,4))

RESONANCE PROFILE OF CLUSTER COMPONENTES

Color code: Raman Intensity

All lines in the in the cluster come from the same inner but different outer tubes.

Exp: intensity normalized by cross section

COMPARISON OF CLUSTERED LINES WITH CALCULATION

COMPARISON OF CLUSTERED LINES WITH CALCULATION

FERROCENE IN SWCMTs

RAMAN SCATTERING FOM FeCp2 AND C60 GROWN DWCNTs

HR-TEM FOR FERROCENE FILLED SWCNTs

┤|||

- a) As filled
- b) After heat treatment at 1150 °C
- c) after heat treatment at 600 °C
- d) Fe₃C particle with simulation

K. Suenaga, 2007

¹³C precursor grown DWCNT

SPECTROSCOPY FOR ¹³C-SWCNT

RBM line

D line

CHECKING THE ROLE OF TOLUENE

¹³C enriched toluene+ C_{60}

515 nm, RT

¹³C-SWCNT@¹²C-SWCNTs RELAXATION OF MAGNETIC MOMENTS

DYNAMICS OF NUCLEAR SPINS

1D spin diffusion

Korringa relaxation

RESULTS FROM NMR RELAXATION

Description with a gaped DOS, $\Delta = 20$ K,

i) High T: 1/TT₁ constant, independent from T for all tubes, Korringa behavior

- ii) T<150K: 1/TT₁ increases dramatically
- iii) Below 20 K a spin gap appears

Origin of gap:

Not field-induced (independent of field

Not curvature-induced (100 meV expected)

Not longitudinal quantization (distribution expected)

Possible: Peierls or spin-Peierls gap

Origin of metallization:

Intertube interaction Charge tansfer

METALLIZATION FROM TUBE-TUBE INTERACTION

(V. Zolyomi et al. 2007)

General: gap closes or at least gets reduced

TOMONAGA-LUTTINGER DESCRIPTION FOR T₁

For 1D electronic system a correlated ground state is expected ->

TL-liquid instead of Fermi liquid

H. Ishii et al., 2003 from PES: α =0.46 (g=0.18)

TLL is described by bosonization of the fermions

The FL description above uses a gap already at room temperature wich violates $2\Delta/K_BT_c > 3.52$ rule (mean field not applicable)

Here: TLL (ungaped) and Luther- Emery (gaped) description were combined

B. Dora et al., PRL 2007

SUMMARY

The inside of SWCNTs: a narrow space for preparation of new structures.

1D materials from magnetic molecules can be prepared inside.

Nanotubes growth inside: clean room conditions

Raman line pattern of the RBM modes for DWCNTs: pair spectra

Catalytic reactions inside: tube growth at 600 °C

¹³C DWCNTs: with inner tubes almost exclusively ¹³C.
 Raman: G'-anomaly
 NMR: inner tubes: metallic, with a spin gap of 3.5 meV appearing at 20 K, Best described by TLL and LE liquids

ACKNOWLEDGEMENT

Co-worker, in Wien

R. Pfeiffer

- F. Simon
- M. Milnera
- T. Pichler (+IFW Dresden)
- M. Hulman
- W. Plank
- H. Peterlik

international

A. Janossy (TU Budapest)
V. Popov (U Sofia, Namur)
H. Alloul (U Paris Sud)
F. Singer (U Paris Sud)
K Suenaga (AIST, Tsukuba)
H. Kataura (AIST, Tsukuba)
A. Hirsch (U Erlangen)
H. Shiozawa (IFW Dresden)

Projects

FWF, Projekt 14893 Projekt 17345 Projekt 14386

EU, FUNCARS PATONN NANOTEMP IMPRESS