Creating Catalyst-containing Nanostructures via Self-assembled Block Copolymer Templates for Rationally Synthesis of 1D nanostructures

Jennifer Lu

University of California, Merced Agilent Technologies

Carbon Nanotubes

Excellent mechanical properties: Composite

100 to 200 times stronger than steel

Excellent electron transport property: Transistors

- $\mu~\sim$ 3000 to 20,000 cm²/V-sec max reported in p-type CNTFETs
- $\mu \sim 500 \text{ cm}^2/\text{V-sec Si-pFETs}$

High aspect ratio, huge current capability: Field emission tips

 $CNT: 10^{9}A/cm^{2} \quad Metal: < 10^{6}A/cm^{2} \quad Si: < 10^{3}A/cm^{2}$

Space cable (NASA)

CNTFET(IBM)

CNT-based X ray (UNC)

Nanowires

Electronic based sensor Multiplexed electrical detection of cancers 2 3 5 6 2,100 1,950 1,800 1,650 **PSA** NW1 (Prostate) NW2 CEA (Intestinal) 1,650 -NW3 mucin-1 (Overian and Breast) 1,500 2,000 4,000 8,000 6.000 0 G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber, Nat. Biotechnol., 23, 1294 (2005)

Nano-electricity

Z.L. Wang Georgia Tech

^{5µm}ZnŎ

generators

m٧

NanoLaser

Perform Laser surgery

X. Duan, Y. Huang, R.Agarwal. C.Lieber. Nature 421, 241-245 (2003)

Challenges

Lack of <u>controllable synthesis</u> prevents realizing their highly touted properties

Location and diameter are determined by catalyst

Challenges

Controllable growth \rightarrow Catalysts with <u>controlled size and spacing at predefined locations</u>

Transition metal

Carbon nanotubes: Fe, Co, Ni

Nanowires:Au: InP, InAlAs, GaN, SiNi: GaN, SiC, Si

 \leq 3 nm for single-walled carbon nanotubes Catalyst nanoparticle size \leq 20 nm for nanowires

Current top-down lithography

Self-assembled block copolymer

Background: Block copolymers

• Iron-containing nanostructures for CNT growth

Thin film self-assembled iron-containing block copolymers

• Catalytically active transition nanoparticles for CNT and Si nanowire growth Solution self-assembled metal modified block copolymers

Conclusion

Outline

Background: Block copolymers

• Iron-containing nanostructures for CNT growth

Thin film self-assembled iron-containing block copolymers

• Catalytically active transition nanoparticles for CNT and Si nanowire growth Solution self-assembled metal modified block copolymers

• Conclusion

Nanomorphologies Produced by Diblock Copolymer

Self-organize metal-containing block copolymer to produce metal-based nanostructures (A) with periodic size and spacing surrounded by (B)

Template for generating metal-containing nanostructures

Outline

• Background: Block copolymers

• Iron-containing nanostructures for CNT growth

Thin film self-assembled iron-containing block copolymers

• Catalytically active transition nanoparticles for CNT and Si nanowire growth Solution self-assembled metal modified block copolymers

Conclusion

Iron-containing Ferrocenylsilane Block Copolymers Iron is a well-known catalyst system for CNT growth

Thin film Self-assembled Morphologies

Ø _{PFS}	PS	PFS	Domain size	Spacing
0.33	253	44	14	28
0.25	402	98	22	36
0.36	389	108	31	45

Size and spacing can be adjusted by chain lengths

Iron-Containing Nanostructures for CNT growth

Self-assembled polymer thin film

Fe-containing silica posts

Carbon nanotube uniformly distributed over a large surface area!

AFM and Raman analysis:
1 nm in diameter on average
very few defects in CNTs

Acc∀ SpotMagn Det WD Exp _____ 2 μm 1.00 KV 3.0 8000x TLD 6.0 0

Si Rich Ferrocenylsilane-based Copolymer Systems

SiO₂ may further reduce aggregation SiO₂ Spacer Oxygen plasma

PMVS₃₇₇-b-PFEMS₂₅ (13vol% PFEMS)

AFM height image

1 μm by 1 μm scan 10 nm in height

SEM image

 $4~\mu m$ by $4~\mu m$

Tailoring CNTs by Adjusting Block Lengths

Tailoring polymer chain lengths → Fe-containing nanostructure size & density → CNT diameter & density

Rationally synthesize CNTs with predictable and tunable size and density

 $PMVS_{377}$ -b-PFEMS₂₅ G/D= 6 (1.1 nm) $PMVS_{837}$ -b-PFEMS₄₅ G/D= 12 (1.6 nm)

Growth condition for producing defect-free CNTs is sensitive to catalyst size.

CNTs for Display Application

Display Market: \$50 billion per annum

- Thinner
- Brighter
- Better color reproduction
- Faster response time
- Lower power consumption

Few-walled CNTs

Excellent field emission properties
Superior mechanical integrity

Directly grow uniform upright few-walled CNTs on ITO coated glass

CNTs for Display Application

Catalyst: Fe-containing nanostructures (PS₃₈₉-b-PFEMS₁₀₈) Carbon nanotube growth condition: PECVD, 600°C

Excellent Field emission!

<u>PS-b-PFEMS block copolymer template</u>:

Tailoring block lengths

Upright few-walled CNTs→ Excellent emission properties

Uniformly dispersed catalyst species

Evenly populated CNTs — Uniform emission

Selective Growth of CNTs

Combination of top-down litho with bottom-up self-assembly

Self-assembly and lithography patterning processes on a 3 inch wafer format

Diameters of CNTs Grown from Catalyst Islands

Majority of tubes have diameters around or less than 1nm

Conventional Transistor Design Either directly growing CNTs or dispensing as-synthesized CNTs, electrical contact is a random event! not manufacturable process!

Circular Transistor Design

• Weighted average of many tubes ----> Greatly improve consistency and predictability Increase current carrying capacity and gm •

• Diameter and chiral arrangement Alleviate requirements Orientation • Length

Selective Growth of Suspended CNTs

Suspended tubes are free of interaction with underlying substrates

Characterize CNTs by optical means

Raman Characterization

Selective Growth of Suspended CNTs

Suspended tubes are free of interaction with underlying substrates

Characterize CNTs by optical means
 <u>Ideal p-n junction diode (GE)</u>
 <u>Greatly enhanced IR emission (IBM)</u>

Nanoelectromechnical applications ⁻

Ultra-sensitive Mechanical Sensor Mechanical perturbation induces change in resistance Nano-mechanical Switch CNTs mechanically deflected to establish electrical contact Nano-oscillator

Block copolymer \rightarrow controllable synthesis suspended CNTs \rightarrow facilitate device applications

Summary: Thin film self-assembled <u>Ferrocenylsilane-based Block Copolymers</u>

- Iron-containing nanostructures with precise control in size and spacing have been generated by this block template
- Tuniformly distributed and high-quality CNT mats have been produced
- **•** Selective growth of CNTs on a surface or in suspension has been demonstrated
- ➤ CNTs with diameters ~1 nm
- Few-walled, upright CNTs have been synthesized at 600°C with excellent emission properties
- **~** CNT's size and density can be adjusted by tailoring block lengths

For a given growth condition, the amount of dangling bonds varies with catalyst size. To achieve defect-free CNTs with consistent properties, it is essential to have uniform sized catalytically active nanostructures.

Background: Block copolymers

• Iron-containing nanostructures for CNT growth

Thin film self-assembled iron-containing block copolymers

• Catalytically active transition nanoparticles for CNT and Si nanowire growth Solution self-assembled metal modified block copolymers

• Conclusion

PS-b-P2VP:Metal-induced Micellization

Solution Self-assembly: Various Metal Nanoparticles

AFM height images:10 nm in Z scale, 1 by 1µm scan

CNT Mats

High quality CNTs and uniformity maintained over a large surface area

Growth mechanism: Effect of catalyst composition

Ni

Tuning Size & Spacing

3.3 nm, 49 nm

PS₄₇₅-b-P2VP₁₄₁ 2.6nm, 45 nm

PS₂₁₂₈-b-P2VP₅₃₉

3.8 nm, 140 nm

7.5 nm, 81 nm

Size and spacing dictated by block lengths

4.2 nm, 70 nm

AFM height images 1 by 1µm scan

Narrowing Spacing by Adjusting Solution Concentration

0.5 wt % PS₄₇₅-b-P2VP₁₄₁

1.0 wt % PS₄₇₅-b-P2VP₁₄₁

An array of closely packed cobalt nanoparticles to promote vertically oriented CNTs can be formed!

AFM height images 1 by 1µm scan

CNT Diameter Control

Catalyst nanoparticles do not agglomerate at high growth temperature

CNT 2D film

PS₄₇₅-b-P2VP₁₄₁

	Nanoparticle size (nm)	CNT diameter (nm)
PS ₄₇₅ -b-P2VP ₁₄₁	2.2 (±0.1)	1.1(±0.4)
PS ₇₉₄ -b-P2VP ₁₃₉	3.8 (±0.2)	1.7(±0.5)

Electronic signal: Average properties of the individual CNTs Only density matters!

Controlled by the block copolymer approach

- Thin-film transistor (high carrier mobility)
- Sensor
- MALDI-MS target

MALDI-MS

MALDI(Matrix Assisted Laser Desorption and Ionization)

is a technique for ionization of large molecules for Mass Spectroscopic detection

Biopolymer is dissolved in a solvent

Matrix molecule is added (e.g. trans-cinnamic acid, 10,000 times more than biopolymer).

UV-Laser causes the disintegration of matrix

Evaporation and ionization of biopolymers

Positively charged fragmented ions are accelerated and detected

Carbon Nanotube Coated Surface as MALDI Target

500 attomoles BSA (bovine serum albumin) in 0.25 mg/mL CHCA matrix

Able to identify 500 attomoles of bovine serum albumin using CNT surfaces

Catalyst Support

Fail to reduce to 0

	SiO ₂	Mo	Si_3N_4
CNT	dense, long, small	sparse, short , large	No CNTs
Fe Before growth	0.53% (+3)	0.56% (+3)	0.52% (+3)
Fe After growth	0.21% (0)	< 0.1%(0)	< 0.1%(+2, +3)

Fe nanoparticles adhere poorly on Mo and Si_3N_4 surfaces

Growth mechanism: Effect of catalyst support

Growth Mechanism: Carbon feed rate

Collaboration with Duke

Lithographic Selective Growth

Patterned PS-b-CoPVP

Selective growth of CNTs over a large surface area!

CNT Growth Results

Electrical Test Results

Optical lithography to define catalyst nanostructure arrays on a wafer format

CNT growth J Source and Drain

Resistance is 30 kΩ at zero bias
>7 μA pass through

Decent tubes
Good metal contact

3 inch process! However, tube density is extremely low!

Wafer level processing for fabricating CNT- based electronics

Summary: Solution Self-assembled <u>PS-b-PVP Micelles</u>

- Highly ordered nanoparticles with tunable composition, size and spacing on various surfaces can be produced
- Uniformly distributed and high-quality CNT mats have been obtained
- **~** CNTs with diameters ~ 1 nm have been synthesized using Co nanoparticles
- **>** Selective growth of CNTs on a surface or in suspension has been demonstrated
- **•** Wafer-level fabrication of CNT-based electronic devices has been established

Provide an opportunity of studying the growth mechanism Catalyst composition Catalyst support Carbon stock feed rate

Silicon Nanowires from Au Nanoparticles

Au nanoparticles: 5 nm

PS₄₇₅-b-P2VP₁₄₁ HAuCl₄

AFM height images 1 by 1µm scan, 10 nm in height

(20~80 nm from catalyst breaking up 1 nm Au thin film)

Background: Block copolymers

• Iron-containing nanostructures for CNT growth

Thin film self-assembled iron-containing block copolymers

• Catalytically active transition nanoparticles for CNT and Si nanowire growth Solution self-assembled metal modified block copolymers

• Conclusion

Important Attribute of Block Copolymer Template

Nano

Size and Spacing: Mw of each segment Number of metal atoms incorporated onto a polymer chain

Micro and sub-micro

Lithography

Macro

Superior film forming capability serves as a carrier to uniformly distribute nanostructures across a wafer

Ability to control at nano-, micro- and macro-scales simultaneously

Controllable synthesis of 1D nanostructures on a wafer format

Fully compatible with existing semiconductor processes

Conclusion

Thin film self-assembly Ferrocenylsilane-based diblock copolymer

> Solution self-assembly Various metal-complexed PS-b-PVP

Metal-containing nanostructures with controllable and tunable size, spacing and composition

CNTs and Si nanowires: uniform density, narrow diameter distribution, spatially controlled

Predictable and reproducible nanofabrication method

<u>Applications:</u> Transistor, Display, MALDI-MS targets, NEMS

Catalyst size Understanding growth mechanism: Catalyst support Carbon stock feeding rate **Current Collaborators**

<u>University of Toronto</u> Prof. Mitch Winnik

David Rider

<u>Duke University</u> Prof. Jie Liu Chen Qian

Bristol University Prof. Ian Manners <u>MIT</u> Prof. Mildred Dresselhaus Hyungbin Son

<u>University of North Carolina at Chapel Hill</u> Prof. Otto Zhou Eric Peng Thanks you!