

Colorful Carbon: Photophysics of Carbon Nanotubes

Tobias Hertel

Department of Physics and Astronomy & Vanderbilt Institute for Nanoscale Science and Engineering

Montreal, January 2007

Small systems, big concerns

The Washington Post

Sunday, 21. January 2007:

"Nanotechnology is the hot new science of the very small, in which researchers are engineering materials and devices as tiny as a billionth of a meter across. At those scales, even mundane materials such as carbon perform extraordinary feats conducting electricity, for example, or triggering chemical reactions - that they'd never do in their chunkier forms."

"Already, **hundreds of products** containing nanomaterial are on the market, including stain-resistant fabrics, high-tech tennis rackets, cosmetic creams and sunscreens, computer hard drives and **even a "Nanoceuticals Slim Shake,"** which claims to deliver nutrition directly into your cells in the form of "CocoaClusters" 100,000 times smaller than a grain of sand."

Nanotechnology warning sign contest by the **Erosion**, **Technology and Concentration** (ETC) group.

A new nanotech warning sign

In the eye of the public ...

Economist.com

Thursday February 14th 2008

The risk in nanotechnology

A little risky business

Nov 22nd 2007 From The Economist print edition

The unusual properties of tiny particles contain huge promise. But nobody knows how safe they are. And too few people are trying to find out

Today's menu

- Low-dimensional photophysics 101
- Optically excited states in CNTs
- Preparative developments
- Dynamics: introduction and some gory details

ATKINS' EVENTH EDITION PHYSICAL CHEMISTRY Peter Atkins • Julio de Paula

Outlook

Hertel, Walkup, Avouris, Phys. Rev. B 58 (1998) 13870

Now also to be found in Germany's high school standard for Chemistry "Elemente Chemie 1 – Unterrichts-Werk für die Sekundarstufe II", Band 4179, page 175 B6, Klett Verlag.

Nagoya, February 2008

Size matters

VANDERBILT VUNIVERSITY

Montreal, January 2007

Optical band gap of carbon nanotubes

VANDERBILT VUNIVERSITY

Montreal, January 2007

Low dimensional photophysics 101

Nagoya, February 2008

Excited states in semiconductors

Free e-h pairs: $3D \rightarrow 1D$

Sommerfeld factors

(see for example Ogawa and Takagahara, PRB 43 (1991) 14325)

$$\left(\alpha_{cont}(\omega) = \alpha_{free}(\omega)C(\omega)\right)$$

Excitons: $3D \rightarrow 1D$

Effective medium Hamiltonian

$$\left(H = \frac{p^2}{2\mu} - \frac{e^2}{(4\pi\epsilon_0)\epsilon r}\right)$$

Binding energy of the 1s state:

Nagoya, February 2008

1D systems are different

Quantum theory of the optical and electronic properties of semiconductors Haug and Koch, World Scientific (2004).

Nagoya, February 2008

Carbon allotropes

The heritage

- Strong bonds, stiff orbitals
- Inert surfaces (sp²)

Derived properties

• Mechanical, chemical, thermal, electrical and photostability

New qualities

- Variable electronic character
- Variable band-gap
- Unsurpassed transport properties
- Sensitivity to environment

Diamond

C-Nanotube

Graphite

The promise

Most researched

- Electronics
- Composites
- Field emission sources
- Membranes and host materials
- ..

Our interests

- Photosensing
 - specific surface area, chemical stability
- Imaging & microscopy
 - luminescence in the water window, chemical- and photostability
- Agents and reporters in biological systems
 - benign surface chemistry, low cytotoxicity

Practical challenges

• Solubilization for use in various environments

 CNT soot is hydrophobic and insoluble in practically all organic solvents

Purification, structural sorting

- CVD synthesized material is polydisperse
- Mixed metallic and semiconducting tubes

Soft functionalization

- graphitic surfaces not biocompatible
- graphitic surfaces have no chemical specificity

Nagoya, February 2008

Wrapping graphene

Montreal, January 2007

19

Chirality and diameter make a difference

Diameter dependence of optical band gap

Band gap in semiconducting SWNTs

Free parameter: nearest neighbor hopping or transfer integral:

$$t = \langle p_a^A(r) | \mathbf{H} | p_z^B(r - r_{C-C}) \rangle$$

Deviation from 1/d scaling because of curvature and chirality effects on π - π overlap.

Coulomb interactions give birth to excitons

Many particle problem with Coulomb interaction: Solution of the Bethe-Salpeter equation

Perebeinos et al., PRL **92**, 257402 (2004). Spataru et al., PRL **92**, 77402 (2004).

$$\Delta_k A_k^S \sum_{k'} K_{k,k'}^{eh} A_{k'}^S = \Omega_S A_{k'}^S$$

 Δ_k - quasiparticle energie (not WW) $K_{k,k'}^{eh} = K_{k,k'}^d + 2K_{k,k'}^x$ - direct and exchange terms A_k^S - exciton amplitude

VANDERBILT **V**UNIVERSITY

Simplified energy level scheme

VANDERBILT VUNIVERSITY

Including spin and band degeneracy

Spectroscopic assessment

Photoluminescence excitation spectrum, poly-disperse CNT material

Nagoya, February 2008

Absorption spectroscopy: samples 1999-2007

1999	Laseroven material: $\emptyset \approx 1.4$ nm		
1999	Laseroven material: $\emptyset \approx 1.2$ nm		
2000 CVD material (HIPCO): $\emptyset \approx 1.0$ nm			
2002 HI	PCO colloidal		
2003 Ø ≈	CVD material (CoMoCAT) colloidal: 0.8 nm		
2005	CoMoCAT material: isopycnic fractionation .		
2006 (iso	Fractionation of metallic tubes pycnic)		
Kataura Hertel e O'Conn Arnold Arnold	a et al., Synth. Metals 103 (1999) 2555. et al., Appl. Phys. A 75 (2002) 449. el et al., Science 297 (2002) 593. et al., Nano Lett. 5 (2005) 713. et al., Nature Nanotech. 1 (2006) 60.		

Nagoya, February 2008

Energetic landscape

Known to some degree

 Energetics of singlet manifold

Unresolved

- Decay of excited states?
- Coupling to vibrations?
- Exciton size?
- Branching ratios?
- Energetics of triplet manifold?

Sample preparation

Nagoya, February 2008

Colloidal Nanotube suspensions

Density gradient ultracentrifugation (DGU)

- Additives generating density gradients
 - CsCl: 1.0-1.9 g/cm³
 - Sucrose: 1.0-1.35 g/cm³
 - Iodixanol: 1.0-1.6 g/cm³
 - ...
- Ultracentrifugation at high accelerations
 - 100,000g -200,000g
- Fractionation by buoyancy (isopycnic fractionation)

The supernatant is polydisperse

Comocat & Na-cholate in iodixanol gradient

- Starting material contains in excess of 70 wt.% of small aggregates.
- Single tube fractions have $\eta > 1\%$.

Crochet, Clemens, Hertel, JACS 129, p8058 (2007)

Cosurfactants introduce new flavor

- Zero order energetics: amphiphilics in water with nanotube soot
 - Minimization of hydrophobic interactions (CNT-H₂O)
 - Non-specific to tube metallicity or band-gap
- Second order effects
 - Optimization of van der Waals interactions
 - Hamaker constants can be shown to depend on polarizabilities (Lifshitz theory)

$$F(D) = -\frac{A(\epsilon_{\rm CNT}, \epsilon_{\rm S}, \epsilon_{\rm water}) R}{12D^2}$$

- Selectivity towards band-gap and metallicity

Nagoya, February 2008

Better samples through cosurfactant DGU

Kinetics and dynamics

Nagoya, February 2008

Kinetics and dynamics: relevance

Selected applications

- Light emitting devices
- Fluorescent tags
- Saturable absorbers
- Photosensors

Role of excited state dynamics

- determines efficiency (electroluminescence)
- determines quantum yields (photoluminescence)
- power, rep. rate, etc (modelocked ultrafast lasers)

Questions

- rate constants for different relaxation channels
- branching ratios

IBM Group of Ph. Avouris

Leeuw et al., Nano Lett. 2007

Cambridge Group of A. Ferrari

Kinetics and dynamics: overview

Processes of interest

- Internal conversion (IC)
- Intersystem crossing (ICS)
- Trapping
- Branching
- Radiative decay
- Non-radiative decay
- Ground state recovery

38

Radiative and non-radiative decay

non radiative decay S_1 k_{nr} D,T₁? excitation -~~~ radiative decay -~~~ k_{rad} S_0

PL quantum yields

Non-radiative decay knr is efficient

Nagoya, February 2008

Radiative decay τ_{PL} is on the order of ps

$$\eta = \frac{\tau_{\rm PL}}{\tau_{\rm rad}}$$

$$k_{\rm PL} \approx (30 \mathrm{ps})^{-1}$$

Hagen et al., Appl. Phys. A **78**, 1137 (2004) Hertel, et al., Nano Letters (2005)

Nagoya, February 2008

Inhomogeneities affect non-radiative decay

Long tubes shine brighter

Non-radiative decay at tube ends! Diffusion is crucial!

Is diffusion one-dimensional?

Electrophoretic length fractionation

Rajan, Strano, Heller, Hertel, Schulten, JPCB (in press)

Nagoya, February 2008

Determining the exciton size

Exciton size is about 5× the tube diameter

• Nonlinear-response $\Delta T/T = -\Delta \tilde{n}/\tilde{n}_s$ \tilde{n}_s - Saturation density

Radiative and non-radiative decay

Radiative and non-radiative decay

The S₂ resonance is short lived

No S_2 decay into the e_1 - h_1 continuum

VANDERBILT **V**UNIVERSITY

Perturbation theory

 $W_{22} \propto |\langle \psi_{22} | V | \psi_{e-h} \rangle|^2 \rho_{e-h}(E_{22})$

Rate should scale with DOS in final state

Hertel, Crochet, Perebeinos, Arnold, Kappes and Avouris, (Nano Lett. **8**, 87 (2008))

Phonons scatter S₂ into higher S₁ states

Using Su-Schrieffer-Heeger model with matrix element:

$$t = t_0 - g \,\delta R_{C-C}$$

$$g = 5.3 \, eV \, / \, A$$

→ phonon coupling to dark S_1 exciton via zoneboundary optical phonon.

Su et al., PRL 42 (1980) 1698.

Hertel, Crochet, Perebeinos, Arnold, Kappes and Avouris, (Nano Lett. **8**, 87 (2008))

S₂ relaxation summary

Hertel, Crochet, Perebeinos, Arnold, Kappes and Avouris, (Nano Lett. **8**, 87 (2008))

Nagoya, February 2008

Pump-probe spectroscopy: (6,5) DGU material

Pump-probe spectroscopy: (6,5) DGU material

Ground state recovery is diffusion limited

Excitation @ 572 nm $\Delta \alpha / \alpha_0$ / arb. units PB @ 993 nm PB @ 572 nm -0.1 10 100 1000 Pump-probe delay / ps

Survival probability scales like power law in time

 $[A] \propto t^{-\gamma}$

Zhu, Crochet, Resasco, Arnold, Hersam, and Hertel, J. Phys. Chem. C 111, 3831 (2007)

Optical transients

Exciton wavefunctions

Exciton diffusion should be 1-dimensional.

diffusion limited reactions in 1D

Educt-survival probabilities scale with time:

$$[A] \propto t^{-\gamma}$$

Reaction type		exponent	Y
Bimolecular reaction	$A + A \rightarrow B$	1⁄4	
Particle-antiparticle annihilation	$A + \overline{A} \to B$	1⁄2	
Trapping by defects	$A + D \to D^*$	1	

experiment: 0.45±0.03

Toussaint et al., JCP 78, 2642 (1983); Havlin, Adv. Phys. 36, p695 (1987); Yuste et al. Physica A 336, p334 (2004)

Overview S_2 **T-T** annihilation *k_{IC}* ≈ (10 fs)⁻¹ T_1 T_1 (m_s=+1) (m_s=-1) *k_{nr}* ≈ (30 ps)⁻¹ **S**₁ : T_1 *k_{rad}* ≈ (1 ns)⁻¹ $[{\rm A}] \propto t^{-1/2}$ possibly triplet-triplet annihilation S_0 Nagoya, February 2008

Imaging with Si-detectors

- DGU purification of (6,5) suspension
 - PL QY ~ 1%
 - Emission at 980 nm

PL image (right) of SWNT suspension recorded

with Si hole accumulation diode (HAD) CCD array.

Si hole accumulation diode (HAD) CCD sensitivity

Nagoya, February 2008

Soft functionalization

Replacement of surfactants with single stranded DNA by dialysis

Na-cholate
 Nucleotide sequence

thermal stability of DNA-CNT hybrids ~ oligomer length

Nagoya, February 2008

Nagoya, February 2008

61

Engineering of crystallites

• Lateral exciton delocalization

Funding

- NSF
- American Chemical Society
- Max-Kade Foundation
- VINSE

THANKS

Thanks

Current and recent

F. Bonnacorso (summer student) *DGU, aggregates*

K. Müller (summer student) *DGU*

M. Clemens (graduate student) *TCSPC*

S. Novikov (summer student) *DGU, solvatochromism*

J. Thompson

outreach

D. Stich (graduate student) nonlinear dynamics

J. Crochet (graduate student) *nonlinear-optics*

Z. Zhu (graduate student) *nonlinear-optics*

(graduate student)

Collaborations

- University of Oklahoma Resasco
- Northwestern University Arnold, Hersam
- Polytechnical Univ. de Milano
 Lanzani, Lüer
- Technische Universität München Hartschuh
- Universität Karlsruhe
 Kappes, Richert
- MIT Strano, Heller
- IBM Yorktown Heights Avouris, Perebeinos

Interested to join?

people.vanderbilt.edu/~tobias.hertel

tobias.hertel@vanderbilt.edu

