

Resonance Raman Studies of Exciton Behavior In Single-Walled Carbon Nanotubes

Stephen K. Doorn Los Alamos National Laboratory

Presentation Overview

1. SWNT Background

. Excitonic Behavior of Semiconducting Nanotubes

3. Electronic Behavior of Metallic Nanotubes

4. Raman of Enriched Metallic Samples

Los Alamos

LANL Nanotube Effort

Nanotube Separations

Nanotube Redox Chemistry

Nanotube-Based Sensing

Example Applications

Nanoscale Electronics

Derycke, et. al., Nano Lett. 1, 453 (2001).

Satishkumar, et. al., Nature Nanotech. 2, 560 (2007).

Opto-Electronics

Chen, et. al., Science. 310, 1171 (2005).

Fundamental Issues:

--what is the electronic structure?

- --what is the nature of the optically excited state?
- --how do electrons/excitons couple to phonon structure?

Construction of Nanotubes from a Graphene Sheet

Nature of Electronic Excited States

Experimental Deviation from Tight-Binding Description

R.B. Weisman, S.M. Bachilo, D.Tsyboulski, *Appl. Phys. A*, **78**, 1111 (2004).

S.M. Bachilo et. al., *Science*, **298**, 2361 (2002).

Raman on SDS Solubilized HiPco NTs

Individualized HiPco nanotubes with observed diameters ranging from 0.6 to 1.6 nm.

Variation in $E_{v.H.}$ with chirality results in sampling of different chiral groupings as Raman excitation is tuned.

S.K. Doorn, et. al., Appl. Phys. A, 78, 1147 (2004).

Chirality Dependence of Raman Scattering Intensity

S.K. Doorn, et. al., Appl. Phys. A, 78, 1147 (2004).

Chiral dependence reverses on going from E_{11} to E_{22} excitation.

Explains weakness of (6,4)and (8,4) chiralities with E_{11} excitation. Are strong with E_{22} .

$$\alpha = \sum_{i,j} \frac{M_{ee}^{g,i}M_{ee}^{i,g}M_{ep}^{i,j}}{(E_{laser} - E - i\Gamma_r)(E_s - E - i\Gamma_r)}$$

Originates in exciton-phonon coupling.

$$\begin{split} & \left(\hat{\mathcal{V}}_{\text{exc-ph}}^{\text{RBM}} \right) \sim \left[\frac{\partial \gamma_0(\tau_l)}{\partial \tau_l} - 3 \, \delta_0(\tau_l) \, \frac{\partial \sigma_0(\tau_l)}{\partial \tau_l} \right] \mathbf{X} \\ & \left\{ sign(n_e + \nu/3) \, \cos 3\theta \, + \frac{5}{4\sqrt{3}} \, \frac{a}{R} \left| n_e + \nu/3 \right| \left(1 + \frac{\cos^2 3\theta}{5} \right) \right\} \end{split}$$

S.V. Goupalov, *Phys. Rev. B*, **71**, 153404 (2005).
S.V. Goupalov, B.C. Satishkumar, S.K. Doorn, *Phys. Rev.B*, **73**, 115401 (2006).

Electronic Structure at High Excitation Energies

 E_{11} and E_{22} Excitations Produce Bound Excitons What About E_{33} and E_{44} ?

E33/E44 Energy Behavior Departs From E11/E22

Nonlinear Scaling Analysis Of Transition Energies

For
$$E_{33}$$
, E_{44} :

Add Additional factor of $0.305/d_t$

Implicates change in excitonic behavior.

Reflection of Decrease In Binding Energy?

Quantum chemistry calculation shows delocalized electron wavefunction

P. T. Araujo et al. PRL 98, 067401 (2007)

Self-energy increases faster than binding energy.

K. Sato et al. Vib. Spect. 45, 89 (2007)

Curvature Effects on E33 and E44

Photoluminescence Excitation Map

 E_{33} (expt.) > E_{33} (ETB) (For PLE and Raman)

E_{44} trend less clear.

Haroz, et. al., *Phys. Rev. B*, **77**, 125405 (2008).

Scaling Law Analysis on Small Diameter Nanotubes

Haroz, et. al., Phys. Rev. B, 77, 125405 (2008).

Band Crossing in mod-2 Chiralities

Chirality Dependence of Many-Body Effects

- --Downward trend at small d is due to chiral angle dependence of the many-body effects.
- --Many-body energy spread in opposite direction from that induced by trigonal warping effects.

The (7,5) Assignment

If we consider the (7,5) point as an E₅₅ transition energy, it matches the trend with the other chiralities.

Excitons in One-Dimensional Metals

J. Deslippe et. al., *Nano Lett.*, **7**, 1626 (2007).

Strong screening prohibits exciton formation in 2-D and 3-D metals.

Long-range interactions overcome screening in 1-D metallic SWNTs.

F. Wang et. al., *Phys. Rev. Lett.*, **99**, 227401 (2007).

Raman Analysis of Metallic Nanotubes

S.K. Doorn, et. al., Phys. Rev. B, 78, 165408 (2008)

Scaling Analysis of Metallic Energies

S.K. Doorn, et. al., Phys. Rev. B, 78, 165408 (2008)

Semiconducting scaling lines compared to metallic energy data.

Overlap of metallic scaling with semicond. consequence of similar sampling of BZ.

Scaling behavior provides indirect evidence of exciton formation.

Schematic Analysis of Relative Scaling Behaviors

Lack of exciton formation should place E_{22} metallic data above the semiconductor scaling line.

Metallic and Semiconductor Scaling Law Comparisons

 E_{11} metallic data evenly distributed about trend line.

E₂₂ metallic data weighted below the trend line.

Exciton-Phonon Coupling In Metallic Nanotubes

Comparable Upper and Lower Branch Intensities

K-Г vs. K-M Valley Coupling

Transitions originating in K-M valley expected to be stronger.

Goupalov, et. al., Phys. Rev. B, 73, 115401 (2006).

General Metallic Intensity Behavior

--Intensity decreases as diameter decreases.

--Opposite of expectation based on dependence of exciton-phonon coupling.

Diameter Dependence of Gamma

S.K. Doorn, et. al., Phys. Rev. B, 78, 165408 (2008)

Expectations From Theory

Park et. al., Phys. Rev. B, 74, 165414 (2006).

--at large d, Γ increases nearly linearly as d decreases.

--upper and lower branch Γ similar at large d.

Parallels to Semiconductor Intensity Behavior

E11/E22

(n,m)	<i>I</i> ₁₁	<i>I</i> ₂₂
(6,4)	0.26	0.054
(8,3)	12.6	1.03
(9,1)	15.6	0.33
(5,4)	0.21	0.0037
(6,5)	20.7	0.0720
(7,3)	16.4	0.0014

B.C. Satishkumar, et. al., *Phys. Rev. B*, **74**, 155409 (2006).

P.T. Araujo, et. al., *Phys. Rev. Lett.*, **98**, 067401 (2007).

E11/E22 profiles and Gammas

B.C. Satishkumar, S.V. Goupalov, E.H. Haroz, S.K. Doorn, Phys. Rev. B, 74, 155409 (2006).

E33 Excitation Profiles

• Trend to larger Γ_{ii} continues.

• Expect D.O.S. and relaxation pathways to increase.

• Agrees with quantum chemical results increased number of closely spaced states.

Haroz, et. al., *Phys. Rev. B*, **77**, 125405 (2008).

Phonon Coupling to Low-Energy Excitations: G-Band

G-Band Lineshape: Gating and Chirality Effects

Los Alamos

Ensemble Spectra: Approaching the Pure Armchair Limit

Density Gradient Separations

- Widely used in biochemistry and pharmaceutical industry.
- Separation based on very subtle differences in buoyant densities of components—diameter dependent.
- Ultracentrifugation within a preformed gradient that varies in density with height.
- Nanotubes separate into levels of gradient of matching density upon ultracentrifugation.
- Typically requires use of cosurfactant (various combinations of SDS, SDBS, cholates) suspension of nanotubes.

Summary

Raman is a sensitive probe of structure, phonon-coupling, and nature of excited states.

First evidence for transition cross-over effect and chirality dependence of many-body influences.

Support for the existence of excitons in 1-D metals.

First Raman evidence of metallic upper branches.

G+ (TO) dominance in armchair spectra is a general behavior.

Acknowledgements

Curvature Effects On E33/E44 Erik Haroz (Rice) Sergei M. Bachilo (Rice) R. Bruce Weisman (Rice)

E_{33}/E_{44} and Metallics

Ado Jorio (Belo Horizonte) Paulo Araujo (Belo Horizonte) Shigeo Maruyama (Univ. of Tokyo) Kenji Hata (AIST)

Armchair Raman

Erik Haroz (Rice) Jun Kono (Rice)

