

One-Dimensional Electron and Thermal Transport in Suspended Carbon Nanotubes

Steve Cronin, I-Kai Hsu, Adam Bushmaker University of Southern California

Vikram Deshpande, Scott Hsieh, Marc Bockrath California Institute of Technology

> Michael Pettes and Li Shi University of Texas, Austin

What is a Carbon Nanotube?

Imagine rolling a sheet of graphite into a seamless cylindrical tube.

Chirality (*n*,*m*):

 $C_h = 4a_1 + 2a_2 = (4,2)$

Atomic Force Microscope (AFM)

Bockrath, et al., Nano Lett., 2, 187 (2002).

Why Study Carbon Nanotubes?

- 1nm in diameter, 1cm in length, aspect ratio ~107
- 100% surface-to-volume ratio
- 1 defect in 10¹² C atoms => ballistic conduction
- High melting point ~3800°C
- High Young's modulus 1TPa (> diamond)
- High electronic current carrying capacity (10⁹A/cm²) ~10³ times higher than that of the noble metals
- Thermal conductivity 6600W/mK at room temperature is twice the maximum known bulk thermal conductor, isotropically pure diamond = 3320W/mK

Despite 46,000 publications, no large scale commercial applications of nanotubes

Review: High Field Transport

 Carbon nanotubes have extremely high current density threshold ~ 10⁹A/cm².

• Yao *et al.* proposed *G* band optical phonon emission.

Yao et al. PRL 84, 2941 (2000).

Review: High Field Transport

- Suspended nanotubes with low contact resistance show negative differential conductance.
 - Landauer Model

Pop, et al. PRL 95, 155505 (2005)

Using Raman Spectroscopy...

What is the temperature of the nanotube at each point on the I-V curve?

Can we observe optical phonon emission?

Sample Fabrication

- Pt electrodes deposited on top of trenches etched in Si/SiO₂.
- Catalyst patterned lithographically
- Nanotubes are growth in a mixture of methane and hydrogen over the wafer at 800°C.
- Measure the nanotubes, as-grown.

Negative Differential Conductance

- Selected individual metallic nanotubes exhibiting NDC
- Pristine, highly crystalline, as-grown nanotubes
- Measure the intrinsic properties of nanotube

Carbon Nanotube Applications

Space Elevator

Transistor array regions

Flexible Electronics

Source: IEEE Spectrum, Aug 2005

Ju, et al., Nature 2007

Experimental Setup

Optical Microscope Image:

SEM Image:

Our device (example)

University of Southern California

Single Nanotube Raman Spectroscopy

Intensity

Despite the extremely small geometric cross-section the Raman signal from a single isolated nanotube can be observed.

- 10⁵ enhancement in scattering cross-section due to singularities in the DOS
- Resonance occurs when $E_{laser} = E_{ii}$
- Only observe nanotubes that are resonant with E_{laser}

Jorio, et al., PRL, 86, 1118 (2001)

Nanotubes on a Substrate with Grid Patterned by e-Beam Lithography

AFM Image

Optical Image

Raman Spectroscopy of Individual Nanotube on a Substrate with Grid

Raman tells us:

- Metal / Semiconducting nature \rightarrow *G* Band lineshape
- Diameter ($\pm 5\%$) \rightarrow Inverse to RBM
- Electronic transition energies $(E_{ii}) \rightarrow$ Laser Energy
- Rough chirality $(n,m) \rightarrow E_{ii}$ and ω_{RBM}
- Orientation of a nanotube → Polarized Raman Intensity
- Defect concentration $\rightarrow D$ Band Intensity
- Strain / Temperature effects \rightarrow G band frequency shift
- Non-contact
- Non-destructive

Raman Spectra

• Downshift of the *G*-band is caused by thermal expansion when the laser heats the nanotube and lengthens the interatomic C-C length.

Temperature Coefficient of G band

TOC= -0.044*cm*⁻¹/*K*, Atashbar, *et. al., App. Phys. Lett.* 86, 123112 (2005) *TOC*= -0.042*cm*⁻¹/*K*, H. D. Li, *et. al., App. Phys.* 76, 2053 (2000) *TOC*= -0.028*cm*⁻¹/*K*, Huang, *et. al., App. Phys.* 84, 4022 (1998)

I.K. Hsu, et. al., App. Phys. Lett. 92, 063119 (2008)

Temperature Coefficient of G band

Temperature coefficient of *G* band shifts= -0.0226 cm⁻¹/K

TOC= -0.044*cm*⁻¹/*K*, Atashbar, *et. al., App. Phys. Lett.* 86, 123112 (2005) *TOC*= -0.042*cm*⁻¹/*K*, H. D. Li, *et. al., App. Phys.* 76, 2053 (2000) *TOC*= -0.028*cm*⁻¹/*K*, Huang, *et. al., App. Phys.* 84, 4022 (1998)

I.K. Hsu, et. al., App. Phys. Lett. 92, 063119 (2008)

Electrical Heating

Nanotube reaches 1600°C at high voltage bias

Electrical Heating

Chiashi, et al, Jpn. J. Appl. Phys., 47, 2010 (2008).

Electrical Heating

Chiashi, et al, Jpn. J. Appl. Phys., 47, 2010 (2008).

Comparison of Raman Downshift vs. Stokes/AS Temperature Measurement

High temperatures were corroborated with AS spectroscopy

G₊ (TO) Preferential Heating

- Preferential shift indicates large non-equilibrium phonon populations
 - G₊ @ 1000°C
 - G₋ @ 40°C
- An extreme state of thermal non-equilibrium

Optical Phonon Emission

- Electrons must exceed threshold phonon energy.
- And then, travel a little bit more before scattering.

Park, et al. Nano Lett. 4, 517 (2004)

Yao et al. PRL 84 2941 (2000)

Electron Transport Model

• The Landauer Model: (Pop, Mann, Park, Yao, and others)

$$R(V,T) = R_{c} + \frac{h}{4q^{2}} \left[\frac{L}{\lambda_{eff}(V,T)} + 1 \right]$$
Phonon scattering Quantum contribution Conductance

• Matthiessen's Rule:

$$\lambda_{eff}^{-1} = \lambda_{ac}^{-1} + \lambda_{op,ems}^{-1} + \lambda_{op,abs}^{-1}$$
Dominant contribution to $\lambda_{op,abs}^{-1}$ trans scattering and nanotube heating $\frac{\partial P}{\partial P}$

Park *et al.* Nano Lett. **4** 517 (2004) Yao *et al.* PRL **84** 2941 (2000) Javey *et al.* PRL **92** 106804 (2004) Pop *et al.* PRL **95** 155505 (2005)

d,

(nm)

1.70

へ。 (nm)

18

26

35

9

28

Results of the Model

Apply the Landauer model:

 R_{c} , λ_{op}^{min} = fitting parameters

$$R(V,T) = R_c + \frac{h}{4q^2} \left[\frac{L}{\lambda_{eff}(V,T)} + 1 \right]$$

G₊ Preferential Heating

of only one phonon mode?

The Kohn Anomaly

$$E_{\rm TOT} = \int_{-\infty}^{E_{\rm F}} E \cdot D(E) dE$$

- Strong coupling of electrons and phonons at the Fermi energy.
- Atomic displacements create dynamic bandgap, which lowers the energy of the phonons.

The Kohn Anomaly in 1D

- The Kohn anomaly is exacerbated in 1D because of the limited number of phonon and electronic states.
- At low temperatures the phonon frequency reduced to zero resulting in a permanent lattice (Peierls) distortion.

Preferential Electron-Phonon Coupling

Piscanec et al. Phys. Rev. B 75 35427 (2007)

Observation of 2K_F Optical Phonon Preferential Coupling

- 2k_F phonons are heated
- Each phonon band is expected to be in thermal equilibrium
- We observe the temperature of the bands with Raman spectroscopy
- The TO band is preferentially heated

Piscanec et al. Phys. Rev. B 75 35427 (2007)

Observation of 2K_F Optical Phonon Preferential Coupling

- 2k_F phonons are heated
- Each phonon band is expected to be in thermal equilibrium
- We observe the temperature of the bands with Raman spectroscopy
- The TO band is preferentially heated

Sometimes, Only $G_{-}(LO)$ is Heated

- Even less frequently, only G₁ is heated (1 tube)
- Theory: rare chirality with non-Raman active TO phonon branch
 - Results in observation of heating in only LO branch
- Two types of metallic nanotubes: R = 1,3
 - LO heating is observed in R = 1 nanotubes

Preferential $G_{-}(LO)$ Heating

Piscanec *et al.* Phys. Rev. B **75** 35427 (2007)

Gate Voltage

Born-Oppenheimer Approximation

- The approximation: Electrons equilibrate to the instantaneous ground state faster than the atoms vibrate.
- Approximation breaks down in SWNTs

1.) fast vibrational motion (τ_{OP} = 0.02ps)

2.) long electron lifetimes ($\tau_{electron} = 2ps$)

Non-Adiabatic Phonon Renormalization

Caudal et al, PRB, **75**,115423 (2007) Tsang et al, Nat. Phys. **2**, 725 (2005)

Comparison with Literature

Gate Voltage Dependence

Our Devices: Few defects Suspended Long electron lifetimes

Bushmaker et al. Nano Lett. accepted (2008).

Gate Voltage Dependence

- "W" shape indicates breakdown of the BOA.
- Non-adiabatic model also predicts FWHM.

Bushmaker et al. Nano Lett. accepted (2008).

Gate Voltage Dependence

- "W" shape is more pronounced.
- Good agreement with FWHM.

Conclusion

- Carbon nanotubes provide an ideal system for studying 1D physics.
- Preferential heating, mode selective el-ph coupling, non-equilibrium phonon populations, negative differential conductance (NDC), caused by the Kohn anomalies.
- Breakdown of the Born-Oppenheimer approximation, due to long electron lifetimes.

Thank You

AFOSR Award No. FA9550-08-1-0019. DOE Award No. DE-FG02-07ER46376 ONR Award No. N00014-08-1-0132 NSF Graduate Research Fellowship Program