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What I’m going to talk about …. 

A number of very promising and exciting paper have been published concerning SWNT 
growth, chiral selectivity and possible applications … 
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Nature 2017 



What I’m NOT going to talk about …. 

A number of very promising and exciting paper have been published concerning SWNT 
growth, chiral selectivity and possible applications … 
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Nature 2017 

 
Too difficult for the moment … 
 
Focus on simpler, easier to reproduce results 
 
Close interaction between experiments  
   and theory / computer simulations 
 



Understanding CVD synthesis of SWNT 

  … using « simple » catalysts (Ni, Co, Fe) 

 

State of catalyst nanoparticle under CVD conditions 

o Thermodynamics of isolated NPs + C / Phase diagrams / Nucleation  

 

Tangential and perpendicular growth modes      

o Understand why ? Can we control them ? 

o Selectivity In perpendicular mode 

o Role of tube/NP lateral interaction in tangential mode 
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Perpendicular mode : 𝑅𝑑 = 𝐷𝑇𝑢𝑏𝑒

𝐷𝑁𝑃   <  1 Tangential mode : 𝑅𝑑 = 𝐷𝑇𝑢𝑏𝑒
𝐷𝑁𝑃    ~1 



Carbon fiber versus SWNT growth : nanoscale matters ! 

Growth results from gradient of 𝝁𝑪 

•  𝜇𝐶
𝑠  is imposed on NP surface by thermochemistry of feedstock 

decomposition 

• Once a tube is formed, it acts as a carbon sink, hence 𝜇𝐶
𝑓

 is fixed 
and lower than 𝜇𝐶

𝑠   
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Snoeck et al. J. Catal. 1997, 169, 240–249. 
Abild-Pedersen et al.  Phys. A. B 2006, 73, 1–13. 

𝜇𝐶
𝑓

 

𝜇𝐶
𝑠  

10-100 nm 

• Smaller NPs and tubes (1-4 nm)  

• Experimental investigation are difficult 

• Surface and interface become important 

• Computer simulations are essential to 
understand mechanisms 

 

Zhu et al., Small 2005 

2 nm 



Computer simulation tools 
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Surface energy Ni (111) : 1.35 J/m2 

  Ni (100) : 1.64 J/m2 

 

Ni clusters   FCC 201 atoms : 2.10 J/m2  
  FCC 405 atoms : 2.05 J/m2  
  Liquid 405 atoms : 2.0 – 1.0 J/m2  
  (depending on C fraction) 
 
Bulk solubility in agreement with experiments 
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Parameterized  tight binding model 4th moment approximation 

for Nickel + Carbon, now also for Platinum + Carbon 

 

Amara et al. Phys. Rev. B 73, 113404 (2006) 
  Phys. Rev. B 79, 014109 (2009) 
J. H. Los et al. Phys. Rev. B 84, 085455 (2011) 

Grand Canonical Monte Carlo simulations 
    to focus on thermodynamics 



Computer simulation tools 
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Wetting of Ni+C nanoparticles on graphene 

Contact angle increases (tendency to dewet graphene 
layer) for carbon rich Ni nanoparticles 
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1400 K 

405 Ni + 24 % C 

405 Ni +11 % C 

405 Ni 

1000 K 
1400 K 
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Bulk Ni , Fe, Co : Naidich et al. 1971  



Interaction of C with Nickel nanoparticles 

1.1 
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Calculate « sorption » isotherms: 

• Mole fraction of carbon inside Ni NP, as a function of C chemical pot. 

• At different temperatures 

• For different nanoparticle sizes 
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Carbon solubility in Nickel Nanoparticles 

Grand Canonical Monte Carlo calculations  

Christophe Bichara 10 

Solid core / liquid shell structures 

Icosahedral FCC Wulff shaped 

Diarra Phys. Stat. Sol. 2012; PRL 2012 



Carbon solubility in nanoparticles: effect of temperature 

Solubility limits       increase with T 

Pressure to reach this solubility limit also increases with T 

Explains pressure threshold for nucleation of SWNT 

o Cf : in situ Raman during SWNT growth 
M. Picher et al. Nano Letters (2009), 9 (2), 542–547  

 

 

Same data, plotted as function of : 

… Carbon chemical potential C C/ kT ~ Ln (Pressure ), if ideal gas 
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Phase diagram for Ni807 + C nanoparticle 
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I : homogenous liquid 

II : carbon segregation  from homogenous liquid 

III :  carbon segregation from core  / shell NP 

IV :  solid core / liquid shell … different from bulk ! 

V :   solid solution 



Phase diagram for Ni807 + C nanoparticle 
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- Core / shell stucture instead of  
liquid-solid coexistence 

 

- Much deeper eutectic point 

- (1000 K ~ 60% Tm of pure Ni) 

 

- Carbon segregation from crystalline  NPs 
only at very low T   
(850 K ~ 50% Tm of pure Ni) 

 Magnin PRL 2015 

FCC 
201 
405 
807 

atoms 



How would these NPs look like in a TEM ? 

Images calculated on one single configuration, with parameters for a state of art TEM. 

In solid core / disordered shell structures, the outer shell is hardly seen, 

    NPs appear smaller and crystalline 
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Config K: ~ 2/3 disordered layers Config F: ~ 1 disordered layer 



Relevance to SWNT synthesis … nucleation 

Nucleation possible beyond saturation line 

 

Either on a liquid NP, saturated with C, or on 
essentially solid NP, with a disordered surface 
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Nucleation has been studied by other groups: 
 
 
 
 
 
 
 
 
 
Feng Ding J. Phys. Chem B 2004 
 
 
 
 
 
 
 
Neyts JACS 2011 
 
Chirality control at nucleation step ? 
  Highly debated …  



During growth Nanoparticle is in contact with SWNT  
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Contact of Nanoparticle with Nanotube 

% C in nanoparticle should shift to saturation line 
If possible (size, state of NP) Ni wets inner Nanotube 

Isolated  NP is Core / Shell 

Complex thermodynamic system 
requires computer simulation … 



Catalyst / tube Interfacial properties 
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Wetting of Nickel on C sp2 wall 
strongly depends on %C dissolved  

10 % C : partial wetting 

23 % C : complete dewetting 

0 % C : Nickel wets the tube 

Different behavior for Platinum 

0 % C : Pt does not wet the tube 

Different wetting properties will lead to different growth 

modes  𝑅𝑑 = 𝐷𝑇𝑢𝑏𝑒
𝐷𝑁𝑃   
  

that depend on 

• Nature of catalyst :Ni, Fe, Co … Pt, CoW, Mo2C, WC ? 

• Nature of C precursor (CO vs CH4) 



Fixed chirality, different carbon fractions 

Tube chirality (10, 7)  
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6 % C 0 % C 18 % C 12 % C 24 % C 

Tendency for dissolved C atoms (pink) to avoid tube lip and inner space 
 
Similar to what we saw for graphene on Ni : Depletion of C in Ni subsurface, once 
            graphene layer is formed 



Unexpected behavior of carbon metal interfaces with Ni (Co, Fe) 
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Depletion of dissolved C close 
to graphene wall … 
confirmed by in situ XPS  
Weatherup et al. JACS 136, 13698 (2014) 
Benayad et al.  J. Phys. Chem. C 117, 4727 (2013) 
 

Subsurface interstitials most 
favorable to incorporate individual 
Carbon atoms on free Ni surface 
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Ekin = 600 eV 
λescape ≈ 11 Å 

Ekin = 450 eV 
λescape ≈ 10 Å 

Ekin = 300 eV 
λescape ≈ 9 Å 

Ekin = 150 eV 
λescape ≈ 7 Å 

bulk 

surface 



Quantitative analysis of Monte Carlo data: SWNT/NP diameter ratio 
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Aspect ratio  𝑅𝑑 = 𝐷𝑇𝑢𝑏𝑒
𝐷𝑁𝑃    depends : strongly on %C dissolved 

     weakly on tube chirality 



TEM observation of different growth modes 

TEM performed after synthesis  (Maoshuai He, Aalto Univ. + LEM/ONERA) 
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Perpendicular mode 

𝑅𝑑 = 
𝐷𝑇𝑢𝑏𝑒

𝐷𝑁𝑃   
 <  1 

Line contact between Tube and NP 

Tangential mode 

𝑅𝑑 = 
𝐷𝑇𝑢𝑏𝑒

𝐷𝑁𝑃   
 ~ 1 

Surface contact between tube and NP 



In situ TEM observation of different growth modes 

In situ TEM during growth : Jens Kling, Lili Zhang, J. B. Wagner (DTU Denmark) 
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Co on MgO + EtOH – 700°C  

 

Pt on MgO + EtOH – 550°C 



Can we control SWNT growth modes ? 

Idea is to control metal – carbon interfacial properties. How can this be achieved ? 

 

❶ Use surfactant  
• Has been done : Windle + others : adding Sulfur or … 

 

❷ Temperature changes during growth 
• Yao et al. : Nat. Mat. 2007; J. Phys. Chem. C 2009 

 

❸ Control carbon fraction in catalyst 
• Experimentally : icosahedral versus f.c.c. Au nanoparticles 

He et al.,  Nanoscale 2015, 7, 20284–20289. 

• Numerically, thanks to our Tight Binding model 
Aguiar et al. , submitted to Carbon (arXiv:1702.06742 ) 
 

❹ Control via gas phase : ambient, feedstock 
• Chenguang Lu and Jie Liu; J. Phys. Chem B 2006; Thurakitseree ACS Nano (2011) 

• Alternating CH4 and CO feedstocks 
 

❺ Use bimetallic catalyst ? 
• Not very clear yet  
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https://arxiv.org/abs/1702.06742


CVD on Au : growth when FCC, no growth when icosahedral 

As prepared Au NPs are Icosahedral  
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After 2h @ 800°C in air 

o some NPs transform into FCC (top) 

o some remain Icosahedral (bottom) 

Exptal work : Maoshuai He, E. Kauppinen + Aalto group, Annick Loiseau  



 CVD on Au : growth when FCC, no growth when icosahedral 

CVD growth with CO at 1 atm and T ranging from 600°C to 800°C 
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Icosahedral NPs are encapsulated  
by C and don’t grow tubes  

800 C  600 C 

FCC Au nanoparticles promote 
SWNT growth 

Can we explain why ? 

 

 



Change C solubility in Nanoparticle 

Thanks to Tight Binding model, it’s easy to change heat of C solution in metal … 
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metal 
carbon 

Key parameter 

Heat of solution of C atom in bulk metal, 

Driven by (carbon p-metal d) energy level difference 

 

 

(εp – εd) = −2.7 eV     ∆𝐻𝐶
∞= + 0.3 eV Ni+ ~ Fe  

(εp – εd) = -4.2 eV     ∆𝑯𝑪
∞= + 0.5 eV real Ni 

(εp – εd) = −5.2 eV     ∆𝐻𝐶
∞= + 1.0 eV Ni-  

                + 2.0  Cu 

                + 4.0 Au 

Hu et al.  J. Phys. Chem. Lett. 2015, 3263 

Fe 



Why FCC Au NPs work and Icosahedral don’t … 
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Larger C solubility 
∆𝑯𝑪

∞= + 0.3 eV 

Normal Ni 
∆𝑯𝑪

∞= + 0.5 eV 

Smaller C solubility  
∆𝑯𝑪

∞= + 1.0 eV 

Icosahedral 309 



Why FCC Au NPs work and Icosahedral don’t … 
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Larger C solubility 
∆𝑯𝑪

∞= + 0.3 eV 

Normal Ni 
∆𝑯𝑪

∞= + 0.5 eV 

Smaller C solubility  
∆𝑯𝑪

∞= + 1.0 eV 

• icosahedral NP : 
 
Adsorption isotherm for is shifted 
for system with lower C solubility 
 
C incorporation more difficult 

 

• Pressure range where only fcc NP 
are activated for growth 

 

• C goes in subsurface for fcc 
structure, enabling sp2 cap lift-off 
 

• C remains on surface for ico Au, 
leading to encapsulation 

 

He et al. Nanoscale 2015, 7, 20284 



Growth sequence with Nickel 
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Carbon dimers are taken out of the NP, because larger %C dissolved 

Long chains are formed, detached from surface 

Tendency to dewet and detachement of NP 

Alltogether, rather messy growth … with defects 

Grand Canonical MC simulations 
1200 K, µC = -6.20 eV/C 



Growth sequence with Nickel with reduced carbon solubility 

Shorter chains, in contact with metal when pure, avoiding contact with Ni+C dissolved 

Tendency to encapsulate NP, because of more wetting tendency  

Less defects, slower, more controlled growth 
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Grand Canonical MC simulations 
1200 K, µC = -6.20 eV/C 



Can we control SWNT growth modes ? 

Idea is to control metal – carbon interfacial properties. How can this be achieved ? 

 

❶ Use surfactant  
• Has been done : Windle + others : adding Sulfur or … 

 

❷ Temperature changes during growth 
• Yao et al. : Nat. Mat. 2007; J. Phys. Chem. C 2009 

 

❸ Control carbon fraction in catalyst 
• Experimentally : icosahedral versus f.c.c. Au nanoparticles 
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• Alternating CH4 and CO feedstocks 
 

❺ Use bimetallic catalyst ? 
• Not very clear yet  
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https://arxiv.org/abs/1702.06742


Growth modes controlled by carbon fraction dissolved in catalyst 

Large xC : perpendicular 

Small xC : tangential 
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Reversibly tuning growth modes 

Alternating 1min CO, 1 min CH4  nanotube junctions with large diameter difference 
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reversible … ! 

Experiments by Maoshuai He 

CO CH4 CH4 CO 

1min 1min 1min 1min 

Broad width distribution  for thick segments 

Narrow width distribution for thin segments 
: perpendicular mode 



Near armchair chiral preference in perpendicular growth mode … 

Christophe Bichara 
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Lolli et al. J. Phys. Chem. B 2006 
CO and CH4 on CoMo catalyst 

CO on Fe CH4 on Fe 

Maoshuai He et al. Nanoscale 2012, 7394–7398. 

Perpendicular mode 
Line contact only !  

CO is more active than CH4 to carburize NP 
o Perpendicular mode with Fe 
o also with CoMo ? 

 
Can we explain near armchair selectivity ? 

Hua Jiang, Esko Kauppinen 
IRENA report 



Tangential growth mode ? 
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C insertion 

Tube grows 

C insertion 

Tube grows 

Friction 
here ! 

Different growth modes can be observed, and tuned by experimental conditions 

Line contact  Tube slides along 
Nanoparticle : friction ? 

Perpendicular Tangential 



SWNT growth experiments in C. Journet, S. Purcell & coworkers 

Driving force for rotation ? 

Yakobson proposed dimer 
incorporation at « cosy 
corner », thus supporting his 
spiral growth model … 
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Idea : slide a piece of Nickel inside a SWNT … and see what happens  

ReaxFF Molecular Dynamics à 300 K. Constant bias force along z axis for Ni atoms. One C atom fixed 

For appropriate parameters, rotation of the metal inside the tube. Blue atom follows a zig-zag line 
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(6, 5) (6, 6) (10,0) 



Carbon interaction with metal 

• Surfaces / nanoparticles 

• Size dependent phase diagram of Ni+C nanoparticles 

Downshift of eutectic point 

Solid core / disordered shell 

 

Growth modes identified (Fiawoo PRL 2012), but now, understood 

• Large carbon fraction in NP  perpendicular growth 

• Low carbon fraction in  NP  tangential growth 

 

Growth modes can be tuned by 

• Carbon solubility in metal catalysts  

• Carbon feedstock  nature and decomposition (𝜇𝐶
𝑠) 

    

Growth modes may play role in selectivity 

• Perpendicular mode : line contact with NP, near armchair selectivity possible 

• Tangential mode : line + surface contact with NP … still to be explored  

 

Main findings 

Christophe Bichara 38 



39 

Thanks to : 
 
Yann Magnin   CINaM - CNRS and Aix Marseille Univ 
Rafael Martinez Gordillo 
Mamadou Diarra 
Alexandre Zappelli   
 
 
 
 
 
Jan H. Los  Radboud Univ. Nijmegen 
Hakim Amara 
Juan Aguiar  LEM - CNRS and ONERA  
Maoshuai He 
Annick Loiseau  
François Ducastelle 

Thank you for your attention ! 



Very good question …. 

« In theory, there is no difference between practice and theory … 

 … in practice, there is » 
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     Yogi Berra  
 
 
 
 
 
    (base ball player and famous coach) 
 



Model validation: carbon solubility in bulk Ni 

Calculated solubility limit  

below 5% in crystal 

agrees with experiment 
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Monte Carlo calculations in osmotic (*) 
ensemble NNi, μC, Pext (=0), T fixed 

to account for lattice expansion upon C 
incorporation 

 
 (*) J. Am. Chem. Soc. 2008, 130, 14294–14302 



Carbon solubility in nanoparticles  

Adsorption thresholds        depend more 
strongly  on temperature for smaller nanoparticles 

 

Tuning growth conditions could be more difficult for 
smaller NPs and SWNTs ? 

 

 

Diarra et al., 

 Phys. Stat. Sol. 249, No. 12, 2629–2634,2012   
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From adsorption isotherms to phase diagram  … 
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How to quantitatively define 
phase boundaries ? 
 
 
Orientational  order 
parameter S : 
 
P. Steinhardt et al. 
Phys. Rev. B, 28, 2, 784–805, 1983 

 
 

crystalline (S > 0.85) 
 
 
 
 
 
 

liquid or amorphous (S <0.35) 
  



Size dependent phase diagram for Ni-C nanoparticles 

Red, green, blue areas are solid core / liquid shell 

 

As compared to bulk, eutectic shifted to lower Temperature and larger %C 

Liquidus lines shifted to large %C for larger NPs 

Magnin PRL 2015 Christophe Bichara 44 

Ico : 55, 147, 309 Ni atoms FCC : 201, 405, 807 Ni atoms 



Thermodynamic modeling of tube / NP interface 
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Depends on tube chirality ? 

All C dissolved are in outer part of NP 

Gibbs energy of system, as a function of NP size, temperature, fraction of C dissolved in NP  



Dissolution energy calculations : tight binding  
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Without graphene With graphene overlayer 

Subsurface : 
Binding energy -8.21 eV 
 
 
Subsubsurface : 
Binding energy -7.31 eV 
 

Subsurface : 
Binding energy -6.79 eV 
 
 
Subsubsurface : 
Binding energy -7.77 eV 
 

Moors et al. ACS Nano, 2009, 3 (3), 511-516 

Weatherup et al. JACS. 136, 13698 (2014)  



Dissolution energy calculations : DFT  

When graphene is closer to 
surface, subsurface carbon atoms 
are less stable than sub-subsurface 

 

Tight Binding model 
  is qualitatively correct 
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DFT calculations  

 

o VASP code – (PAW; GGA; spin-polarized,…) 

o 6 atomic planes (9 Ni atoms)  

o Graphene (18 C atoms) 

 

Graphene - Ni distance varied : 

d(A) ΔE (1-2) (eV) 

3.50 -0.90 

2.00 -0.10 

1.80 +0.31 

d 

1 

2 



Graphene – Ni interaction 
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Adhesion of graphene layer weaker 

when C is dissolved close to Ni surface 

Explains dewetting of Ni NPs on 
graphene, when stuffed with carbon 
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Statistics on 92 isolated SWNTs 

There is no correlation between SWNT lengths and chiral 

angles. 
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CH4 with Fe NPs on MgO : tangential growth leads to shorter tubes 

CH4 Fe/MgO experiment 

Smaller NP : tangential 

Larger NP : perpendicular 
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Smaller NP, that sustain tangential growth, get more easily 
encapsulated  (deactivated) than larger ones ? 

Tangential mode :  short tubes 

Perpendicular long tubes 

He, M. et al. Carbon N. 2017, 113, 231–236. 



Carburization efficiency of CO and CH4 on Fe 

• Decomposition of CO on Fe is much easier than CH4 

• The carburization rate of CO is 2 orders of magnitude higher than CH4 

With CO, Fe nanoparticles are saturated with C → perpendicular mode 

with CH4, variable fraction of C, depending on NP size → all growth modes observed 
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Grabke, H. J. Mater. Corr. 2003, 54, 736.MTAEC, 2002, 36, 297. 

Rate constant for carburization on Fe (920°C): 
CH4: 1.9 x 10-6 mol/cm2 s bar 
CO: 1.5 x 10-4 mol/cm2 s bar 
 

CH3(s) = H(s) + CH2(s) 
O(s) + CO(g) = CO2(g) 

Hosmani, S. S. et al. An Introduction to Surface  
Alloying of Metals. Springer 2014. 
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CO favors growth of near-armchair SWNTs with small diameters 

CH4 mixed growth modes 

CO perpendicular mode    data Maoshuai He  

CO 

CH4 
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Ding … Bolton NanoLett 2008 

Using their DFT calculations … 
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In perpendicular growth conditions … 
 
Tube / metal NP bonds are stronger for zigzag.  
According to Ding/Bolton, the energy gained by 
reconnecting a cut tube to a metal NP is larger for Fe 
 
Larger absolute values of (ZZ-Arm) will favor zigzag,  
What would be the role of an alloy ? 
    

Metal Armchair ZigZag ZZ-Arm 

Au 0,9 1,63 0,73 

Pd 1,49 2,35 0,86 

Co 1,79 2,66 0,87 

Ni 1,76 2,71 0,95 

Cu 1 2 1 

Fe 1,61 2,73 1,12 



DFT calculations of edge energies 

Adhesion energies  calculated by : 

Ding, F.et al. Nano Lett. 2008, 8, 463–468. 
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For Ni, Co Fe : 

o EA and EZ are in 0.2-0.5 eV/bond range 

o EZ always > EA  

o Is it always like this ? 



Calculation of edge energy 

Approximation : chiral probabilility depends on : 

o Edge armchair or zizgag bonds 

o Tube curvature energy 

Christophe Bichara 
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Liu et al. Phys. Rev. Lett. 2010, 105, 235502.  A 

B 

B  =                  -   

A =                -  

DFT calculations C + Ni 

C saturated Ni 

Edge energy 
A/2 + B = Energy cost of cutting tube 

               + Energy gain by reconnecting it to metal NP + Δ = difficult to evaluate by DFT 

Δ 



Qualitative model for chiral selectivity in perpendicular mode 

𝐸𝑇𝑜𝑡 = 𝐸𝐸𝑑𝑔𝑒 + 𝐸𝐶𝑢𝑟𝑣 = 2 𝑚 𝐸𝐴 + 𝑛 −𝑚 𝐸𝑍 + 𝛼 𝑛 + 𝑚 (𝑛2 + 𝑚2 + 𝑛𝑚)−1 

 

Parameters  (𝐸𝐴, 𝐸𝑍) might be calculated by DFT, or simply used as toy model  
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We can get either :  
o near armchair selectivity for reasonable (𝐸𝐴, 𝐸𝑍) 
o no selectivity 
o near zigzag selectivity for unrealistic parameters 

 
We never get (2m, m) or single chiral tube dominant probability : so ? 


