University of Tokyo. July 5, 2016

Molecularly Tunable Fluorescent Quantum Defects

YuHuang Wang Department of Chemistry and Biochemistry University of Maryland yhw@umd.edu http://www2.chem.umd.edu/groups/wang/

A Brief History of Carbon Materials

from Wikipedia.com

Image Credit: Jannik C. Meyer

An ocean of electrons

An island in the ocean of electrons?

Diamond on graphene?

Inspiration: Point Oxidation

- Exposure of SWCNTs to O_3 and light induces a new emission feature, E_{11}^* , which is red-shift from the native E_{11} emission.
- Also, Harutyunyan, Nagatsu, Kiliedna, Doorn, Matsuda et al.

Molecularly Tunable Fluorescent Quantum Defects

YuHuang Wang University of Maryland yhw@umd.edu; http://www2.chem.umd.edu/groups/wang/

Defects can rule the properties of a crystal. This phenomenon is particularly intriguing in single-walled carbon nanotubes and graphene, where electrons, excitons, phonons, and spin can become strongly coupled with defects.

Collaborator: George Schatz

Defects that Drive Chemical Propagation

Propagating from an implanted sp^3 defect, alkylcarboxyl functional groups are covalently attached to the sp^2 carbon lattice forming a band.

Nature Communications 2011, 2: 382. (also Collaborated w/ Rubloff) J. Phys. Chem. Lett. 2011, 2, 885. Chemistry Materials 2013, 25, 4487.

Defects that Brighten Dark Excitons

Controlled sp³ defects brighten dark excitons in semiconducting carbon nanotubes, improving the photoluminescence quantum yield by up to 28 times.

Defects that Stabilize Trions

When exciton meets electron, trion—a H^- analog—luminesces brightly.

Nature Chemistry **2013**, 5, 840. ACS Nano **2014**, 8, 4239. (collaborated w/ Fourkas) J. Phys. Chem. C **2015**, *11*9, 3733.

What is an Exciton?

Coulomb interaction

Hydrogen atom

Nanotube Excitons

Carbon nanotube exciton has a strong binding energy, which is a significant fraction of the band gap energy.

Optical Properties of SWCNT Excitons

Excitonic energy states can be studied by optical spectroscopic methods.

Many Potential Applications Emission of IR800 Emission of nanotubes -22 V (NIR-II) -33 V Recombination Source 800 1,000 1,200 1,400 Drain Wavelength (nm) Avouris et al. Science 2005 Backgate Nature Photonics 2008 Pros:

- Occurs in near-IR where tissue scattering is minimal.
- Sharp peaks, non-blanking, tunable ۲ Cons:
- Quantum efficiency < 1 % (ensemble) ٠

blood vessel of mouse Nat. Med. 2012 Dai, et al. (Also, Strano, Maruyama in

biosensing, photovoltaics, ...)

(NIR-I)

Absorption

600

mm

Intensity (AU)

Finding Dark Excitons

trans-polyacetylene

n

one-particle picture

*

Theoretical Predictions of Dark Excitons

Zhao, Mazumdar. *PRL*Ando, *J Phys. Soc. Jpn.*Louis et al. *PRL* 2005; Phys. Rev. B 2006 also Tretiak et al. *NL*

polydiacetylene

R

R

Small Window of Reactions

why unnoticed for more than a decade?

CARBON NANOTUBES

A bright future for defects

Covalently bonding groups to the walls of carbon nanotubes has been previously observed to quench their photoluminescence. Now, it has been shown that, if you get the chemistry just right, their photoluminescence can in fact be significantly brightened by introducing defects through functionalization.

Qing Hua Wang and Michael S. Strano

n crystalline materials such as metals and semiconductors, it is the defects rather than the perfect lattice structure that lead to the most interesting and useful properties. For example, line dislocations in metals allow them to be malleable by moving and sliding under mechanical stress; adding impurities to them can result in alloys with superior strength and corrosion resistance; and substituting lattice atoms with dopants in semiconductors allows the Fermi level to be precisely tuned for making transistors. In all of these examples, the careful incorporation of defects imparts very useful properties to crystalline materials¹. It now turns out that adding a controlled concentration of defects can also have benefits for carbon nanotubes, which are cylindrical lattices of carbon atoms. Writing in Nature Chemistry, Wang and co-workers² describe an unexpected new effect by which defects in carbon nanotubes dramatically increase the intensity of their photoluminescence. Single-walled carbon nanotubes

Wang, Q.-H.; Strano, M. S. *Nature Chemistry* **2013**, *5*, 812-813.

"A bright future for defects"? Indeed.

Near-infrared Up-conversion

Also – 2D materials

Molecularly Tunable Quantum Emitters?

Yuan et al. Polymers 2012, 4, 1.

Can we chemically create a series of new quantum emitters from a single CNT crystal by varying the surface functional group?

A New Chemistry That Directly Tailors Excitons

Hyejin Kwon

The reaction is 600 times faster and the induced defect PL is 1.25 times brighter than the brightest enabled by diazonium reactions.

Molecularly Tunable Quantum Emitters

Versatile groups

- Valency controlled: mono/divalent
- Series of alkyl and aryl groups
- Terminal moiety (e.g. -COOH, -NH₂, and -OH)
- Tunable defect PL (64 meV in NIR II, two times larger tunability than the diazonium method)

Inductive Effect on Alkyl Quantum Defects

(6,5)-SWCNT- R	E ₁₁ (nm)	E ₁₁ fwhm (meV)	E ₁₁ - (nm)	E ₁₁ - fwhm (meV)	ΔE (meV)	σ* (calc)
Non-functionalized	979	37	-	-	0	-
-CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	981	45	1096	56	133	-0.774
-CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CF ₃	980	45	1099	56	137	-0.462
-CH ₂ CH ₂ CH ₂ CH ₂ CF ₂ CF ₃	980	38	1107	59	146	-0.127
-CH ₂ CH ₂ CF ₂ CF ₂ CF ₂ CF ₃	983	40	1137	76	170	1.086
-CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₃	981	42	1155	69	190	4.867
-CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CF ₃	980	45	1099	56	137	-0.462
-CH ₂ CH ₂ CH ₂ CH ₂ CF ₃	979	40	1104	59	143	-0.287
-CH ₂ CH ₂ CH ₂ CF ₃	980	42	1101	55	140	-0.034
-CH ₂ CH ₂ CF ₃	980	42	1110	59	147	0.310
-CH ₂ CF ₃	982	42	1114	67	150	1.244
-CF ₃	980	45	1158	63	194	3.961

Inductive Effect on Alkyl Quantum Defects

Tunability originates from strong electronic couplings between excitons and alkyl defects.

Valency Controlled Quantum Defects

			monovalen	t				divalent	
(6,5)-SWCNT- F	R	E ₁₁ (nm)	E ₁₁ - (nm)	ΔE (meV)	(6,5)-SWCN ⁻	T- R	E ₁₁ (nm)	E ₁₁ - (nm)	ΔE (meV)
-CH ₃	н —с–н н	980	1094	132	>CH ₂	C H	980	1125	163
-CF ₃	F C F	980	1158	194	>CF ₂	C. F	980	1164	200
$-C_6H_5$	\rightarrow	979	1129	168	>C ₆ H ₄	\sum	986	1162	190
$-C_6H_4NH_2$		₂ 980	1121	159	>C ₆ H ₃ NH ₂	NH ₂	980	1133	171

Can we control the local atomic configurations of quantum defects?

Conclusions: Part I

- Covalent incorporation of sp³ defects into the sp² lattice of semiconducting carbon nanotubes creates fluorescent quantum defects. Emission from exciton trapped in these defects is significantly brighter, molecularly specific and features substantial vibrational reorganization.
- Molecularly tunable fluorescent quantum defects can be created in semiconducting carbon nanotubes through covalently bonded surface functional groups that are themselves non-emitting.
- By varying the surface functional groups, the same carbon nanotube crystal can be chemically converted to create more than 50 distinct quantum emitters with unique near-infrared photoluminescence.
- Our new ability to control nanostructure excitons through surface functional groups opens up exciting possibilities for post-synthesis chemical engineering of carbon nanomaterials.

The Nanotube Chirality

Image courtesy of Mark Hersam

Fluorescent Quantum Defects: A New Molecular Dimension?

(6,5)-SWCNT- R	E ₁₁ (nm)	E ₁₁ • (nm)	ΔE (meV)	Source of Precursor			
Non -functionalized	979	-	-	12			
	980	1094	132				
-CH2CH2CH2CH3	984	1099	132				
-CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	981	1096	133				
-CH2CH2CH2CH2CH2CH3	980	1097	135	С-ССТОН	979	1125	164
-CH2CH2CH2CH2CH2CH2CF3	980	1099	137	- CH "	979	1129	168
-CH2CH2CH2CH2CH2COOH	980	1102	140		980	1131	169
-CH2CH2CH2CF3	981	1101	140	D _{NH}	980	1133	171
-CH2CH2CH2CH2CF3	979	1104	143	-CH2CH2CF2CF2CF2CF3	983	1137	170
-CH ₂ CH ₂ CF ₃	981	1110	147	-CH2CH2CF2CF2CF2CF2CF3	983	1139	173
-CH2CH2CH2CH2CF2CF3	980	1107	146	-CHF ₃	979	1138	177
-CH ₂ CF ₃	982	1114	150	XX.	980	1145	182
-CH2CF2CF2CF3	980	1114	152	$-CF_2CF_2CF_2CF_2CF_2CF_2CF_2CF_3$	979	1152	190
	980	1121	159	ХД _н	986	1162	190
- N(CH ₃) ₂	984	1127	160	-CF2CF2CF2CF2CF2CF3	981	1155	190
-O-N-N-NH2	979	1121	160	-CF ₂ CF ₂ CF ₂ CF ₃	979	1155	193
>CH ₂ (¹² C)	979	1125	164	-CF ₃	980	1158	194
>CH ₂ (¹³ C)	980	1125	163	>CF ₂	980	1164	200

Name	Abbreviation by Substituent Group	Molecular Structure	Chemical Shifts (ppm) ^a	Characteristic IR Features (cm⁻¹) [♭]	Source
4-diazo-N,N-diethylaniline tetrafluoroborate	N(CH ₂ CH ₃) ₂ -Dz	N BF4	δ 7.45 (ABq, J = 8.8 Hz, Δv = 419.2 Hz, 4H), 1.24 (t, J = 7.2 Hz, 6H), 3.60 (q, J = 7.2 Hz, 4H)	3122, 3084, 2980, 2940, 2135, 1579	MP Biomedicals
4-tert-butylbenzenediazonium tetrafluoroborate	C(CH₃)₃-Dz	BF4	δ 8.17 (ABq, <i>J</i> = 8.8 Hz, Δv = 176.8 Hz, 4H), 1.38 (s, 9H)	3106, 2972, 2903, 2275, 1574	Synthesized
4-methylbenzenediazonium tetrafluoroborate	CH₃-Dz	H ₃ C BF ₄	δ 8.55 (ABq, <i>J</i> = 8.8 Hz, Δv = 254.4 Hz, 4H), 2.64 (s, 3H)	3112, 3039, 2287, 1581	Synthesized
benzenediazonium tetrafluoroborate	H-Dz	BF4	δ 8.50 (d, J = 8.8 Hz, 2H), 8.34 – 8.25 (m, 1H), 7.97 (dt, J = 8.0 Hz, 2H)	3107, 3018, 2295, 1570	Synthesized
4-methoxybenzenediazonium tetrafluoroborate	OCH₃-Dz		δ 8.40 (dd, J = 9.4, 9.5 Hz, 2H), 7.34 (dd, J = 9.4, 9.5 Hz, 2H), 4.06 (s, 3H)	3122, 3106, 2250, 1583, 1572	Sigma Aldrich, 98%
4-carboxybenzenediazonium tetrafluoroborate	COOH-Dz	HOOC BF4	δ 8.49 (ABq, <i>J</i> = 9.0 Hz, Δv = 67.2 Hz, 4H)	3279, 3113, 3042, 2302, 1729, 1581	Synthesized
4-bromobenzenediazonium tetrafluoroborate	Br-Dz		δ 8.22 (ABq, <i>J</i> = 9.1 Hz, Δv = 98.4 Hz, 4H)	3106, 3092, 2286, 1554	Sigma Aldrich, 96%
4-nitrobenzenediazonium tetrafluoroborate	NO ₂ -Dz	O ₂ N BF ₄	δ 8.68 (ABq, <i>J</i> = 9.2 Hz, Δv = 58.5 Hz, 4H)	3104, 3023, 2306, 1614, 1537	Synthesized
3,5-dinitrobenzenediazonium tetrafluoroborate	3,5-(NO ₂)-Dz	NO ₂ N N ₂ BF ₄	δ 9.78 (s, 1H), 9.69 (s, 2H)	3075, 3042, 2316, 1548	Synthesized

Supplementary Table S1. Organic diazonium salts used in this study and their FT-IR and ¹H-NMR signatures.

^{a)} CD₃CN was used as the solvent, ^{b)} Monitored from 4000-400 cm⁻¹; the frequencies shown indicate O-H stretch (3279 cm⁻¹), sp² (3023~3122 cm⁻¹), sp²-CH stretch (2903~2980 cm⁻¹), N=N stretch (diazonium bond, 2135~2316 cm⁻¹), C=O stretch (1614 cm⁻¹) and aromatic C=C bending (1537~1614 cm⁻¹), respectively.

An

(n,m) × *molecules* = *nm*²

opportunity?

So why is this important? A new toolbox

- Optical Probing of pH and Temperature in Complex Fluids Through Semiconducting Carbon Nanotubes
 - Is it possible to probe local chemical events through fluorescent quantum defects?
- Probing quasi-particles
 - Can we probe fundamental physical phenomena through defect-bound quasiparticles (e.g., excitons and trions)?
- Chemical Propagation in an "Electron Sea"
 - How can we separate "growth" from "nucleation" in covalent nanochemistry and use that new capability to design functional materials?

Hyejin Kwon Mijin Kim

J. Phys. Chem. C 2015, 119, 3733.

Only aminoaryl defects respond to pH changes

(9 E) A-W	E ₁₁	E ₁₁ -	E ₁₁ - shift	
(0,0)-117	(nm)	pH 9.0	pH 4.0	(meV)
Pristine	971	-	-	-
-N(CH ₂ CH ₃) ₂	975	1118	1134	18
-N(CH ₃) ₂	975	1118	1134	18
-OCH ₃	973	1116	1116	0
-COOH	976	1124	1124	0
-Br	973	1125	1125	0
-NO2	973	1137	1137	0
-3,5-NO2	973	1145	1145	0

* due to small difference (0.43) in Hammett constant between the protonated and deprotonated forms of carboxylic acid.

J. Phys. Chem. C 2015, 119, 3733.

Trion Photoluminescence: When Exciton Meets Electron

Alex Brozena

Almost as bright as parent exciton.

High binding energy (262 meV vs. ~170-190 meV for unbound trions in (6,5) and 1-20 meV in quantum wells and quantum dots).

Brozena, Leeds, Zhang, Fourkas, Wang, *ACS Nano* **2014**, *8*, 4239.

Defect-Induced Localization Effects

HOMO

Mulliken charges

- DFT: B3LYP/6-31G*
- Charges and frontier orbital wave functions are strongly localized around a defect.
- Excitons respond sensitively to functional defects due to localization?

Pristine (6,5)

Dr. Al'ona Furmanchuk (Schatz Group)

Confined Propagation of Covalent Chemical Reactions on Single-Walled Carbon Nanotubes

Nature Communications 2011 2:382.

• Repeat.

Why Does the Reaction Propagate Exclusively from (sp³) Defects?

Birch Reduction: follow the electron

Localization of electrons around an sp³ defect

Table 1 | Net atomic charges around a sp³ defect site from Mulliken population analysis of a SWNT with a covalently bonded $-(CH_2)_5COOH$ group.

	Neutral	-1 Charge	- 2 Charge
(5,5)-(CH₂)₅COOH	l.		
Defect site	0.12	0.13	0.13
C1	-0.04	-0.07	-0.08
C2	-0.02	-0.05	-0.06
C3	-0.02	- 0.05	-0.06
(10,0)-(CH,),COO	н		
Defect site	0.12	0.13	0.13
C1	-0.04	-0.06	-0.07
C2	- 0.01	-0.02	-0.02
C3	-0.04	-0.06	- 0.07

Carbon atoms not listed have a charge close to zero, being as high as -0.01e, and -0.02e charges for neutral, -1 and -2 charged carbon nanotubes. For the complete set of atomic charges, see Supplementary Tables.

Mulliken Population Analysis

Maricris Mayes George Schatz

Silicon Beads on a String

Sun, et al. ACS Nano, 2013, 7, 2717-2724.

Why Si-C?

- α-Si maximizes Li⁺ storage capacity.
- CNT core improves structural stability and electrical conductivity?
- Core-shell structure shortens Li⁺ diffusion paths, accelerating diffusion kinetics?

CNT@α-Si

Anode Material	Storage Capacity (mA∙h∙g⁻¹)	Electrical Conductivity (S•cm ⁻¹)	Pulverization
α-Silicon	4,200 (Li _{4.2} Si)	≤10 ⁻⁴	Yes
CNTs	~1,000	>10 ⁴	No
Graphite	372 (LiC ₆)	∼ 10 ³	No

A Beaded-String Silicon Anode

Collaboration w/ J. Cumings

Silicon beads "breathe" radially on a string

Movie played at 40x speed lithiation at -3V

Microstructural Evolution

Interfacial Bonding Averts Fracture of Silicon

Yue Qi (GM, now MSU); Teng Li (UMD)

- Formation of Si-C and Si-O covalent bonds increases interfacial bonding by 4 times, based on DFT calculations.
- Finite element simulations suggest that the chemically tailored Si-C interface constrains the Si bead to breathe symmetrically.

Lithium Ions Propagate along a String of Merging Silicon Beads

How can one translate "nano" into "macro"?

Spinning "Nano" into "Macro"?

Roll and Pack

f-CNT@Si Thin Film

Chemically Tailored Interface

Sun, et al. Nano Lett., 2015, 15, 703.

Stabilizing Si-C Interface by Atomic Oxygen

Sun, et al. Nano Lett., 2015, 15, 703.

Defect-Controlled Nucleation

CNT@Si

f-CNT@Si

Sun, et al. Nano Lett., 2015, 15, 703.

Chemically tailored interface slows down capacity loss

CNT@Si versus f-CNT@Si

Sun, et al. Nano Lett., 2015, 15, 703.

Interfacial Oxygen Stabilizes Composite Si Anodes

- High areal capacity (3.86 mAh/cm²), high specific capacity (922 mAh/g based on the mass of the entire electrode), and good cyclability (80% retention of capacity after 160 cycles) are simultaneously attained.
- At 1C, the areal capacity approaches 1.61 mAh/cm² at the 500th cycle.

Sun, et al. Nano Lett., 2015, 15, 703.

Summary: Part II

A Beaded-String Silicon Anode

- Silicon beads on a CNT string "breathe" during lithiation
- Efficient Li⁺ transport
- High electrochemical reversibility
- Spinning "Nano" to "Macro"

propagate

CARBON NANOTUBES

A bright future for defects

Covalently bonding groups to the walls of carbon nanotubes has been previously observed to quench their photoluminescence. Now, it has been shown that, if you get the chemistry just right, their photoluminescence can in fact be significantly brightened by introducing defects through functionalization.

Qing Hua Wang and Michael S. Strano

n crystalline materials such as metals and semiconductors, it is the defects rather than the perfect lattice structure that lead to the most interesting and useful properties. For example, line dislocations in metals allow them to be malleable by moving and sliding under mechanical stress; adding impurities to them can result in alloys with superior strength and corrosion resistance; and substituting lattice atoms with dopants in semiconductors allows the Fermi level to be precisely tuned for making transistors. In all of these examples, the careful incorporation of defects imparts very useful properties to crystalline materials¹. It now turns out that adding a controlled concentration of defects can also have benefits for carbon nanotubes, which are cylindrical lattices of carbon atoms. Writing in Nature Chemistry, Wang and co-workers² describe an unexpected new effect by which defects in carbon nanotubes dramatically increase the intensity of their photoluminescence. Single-walled carbon nanotubes

Wang, Q.-H.; Strano, M. S. *Nature Chemistry* **2013**, *5*, 812-813.

Humanity's Top Ten Problems for next 50 years

2063

ENERGY WATER FOOD ENVIRONMEN POVERTY TERRORIS

AR

Billion People Billion People

Fluorescent Quantum Defects

Dr. Hyejin Kwon (Ph.D. '16)

Lyndsey Powell

Dr. Alex Brozena (Ph.D.'13, DOE Graduate Fellow, inaugural class)

Dr. Yin Zhang (Ph.D. '14)

Brendan Meany

Mijin Kim

Beaded String

Dr. Shunliu Deng

Dr. Hongwei Liao (joint w/ Cumings)

Dr. Chuanfu Sun

Kim Karki (Cumings)

Peng Wang

John Fourkas

Gary Rubloff

Yue Qi

Sang Bok Lee

Morihiro Okada

George Schatz

John Cumings

Stephen Doorn

Daniel Heller

...and many others who have inspired our thoughts and encouraged/helped us in various ways...

An Energy Frontier Research Center Director: Gary Rubloff Deputy Director: Sang Bok Lee

FOUR YEARS OF Electrical Energy A DOE ENERGY FRONTIER RESEARCH CENTER

PRECISION STRUCTURE

DENERGY Scenar

Sandia National Laboratories UCI Yale UF

Wang Group

Xiyuan Cheng Mijin Kim Hyejin Kwon Anna Lieberman (undergra Brendan Meany Jasper Mok (undergrad) Allen Ng Lyndsey Powell Peng Wang Dr. Shunliu Deng Dr. Shunliu Deng Dr. Zhongjie Huang Dr. Morihiro Okada Dr. Zhiwei Peng Dr. Chuan-fu Sun

Collaborators

Dr. Stephen Doorn (LANL) Dr. Daniel Heller (MSKCC) Prof. Mark Hersam (Northwestern) Prof. Matteo Pasquali (Rice) Prof. George Schatz (Northwestern) Dr. Ming Zheng (NIST) ...and many on campus

Funding

Former Group Members Dr. Yanmei Piao (PhD'14, NIST) Dr. Alex Brozena (PhD '13. DOE graduate fellow) Dr. Jarrett Leeds (PhD '13. HP) Prof. ChienFu Chen (National Chung Hsing Univ.) Prof. Shunliu Deng (Xiamen Univ.) Prof. Shunliu Deng (Xiamen Univ.) Prof. Pingli He (China Agricultural University) Prof. Jia Huang (Tongji Univ., 1000 Young Talents) Dr. Hongwei Liao (NanoSynthesis, Inc.) Prof. Cai Shen (Chinese Academy of Sciences) Dr. Yongxin Wang (VF Corporation) Dr. Yin Zhang (Xi'an Jiaotong Univ.)...

Positions Open

http://www2.chem.umd.edu/groups/wang/