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Diffusive-ballistic heat conduction of finite-length single-walled carbon nanotubes has 
been studied by means of non-equilibrium molecular dynamics simulations. The 
length-dependence of thermal conductivity is quantified for a range of nanotube-lengths 
up to a micrometer at room temperature. A gradual transition from nearly pure ballistic 
to diffusive-ballistic heat conduction was identified from the thermal conductivity 
profile. In the diffusive-ballistic regime, the profile exhibits power-law length 
dependence and does not converge even with the tube-length of a micrometer. 
Furthermore, the diameter dependence of thermal conductivity suggests considerable 
suppression of phonon scattering effect as the diameter decreases. 
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1. Introduction 
The expanding expectations for single-walled carbon nanotubes (SWNTs) include 

applications for various electrical and thermal devices due to their unique properties.1) 
SWNTs are expected to possess high thermal conductivity due to their strong carbon 
bonds and the quasi-one-dimensional structure.2) On considering the actual applications, 
one of the essential tasks is to characterize the thermal properties not only for thermal 
devices but also for electrical devices since they determine the affordable amount of 
electrical current through the system. 

Following the thermal conductivity measurements of SWNTs in forms of mats and 
bundles3), with advances in SWNT synthesis and MEMS techniques, thermal 
conductivity (or thermal conductance) measurements of individual carbon nanotubes 
have been recently reported not only for multi-walled carbon nanotubes4,5), but also for 
SWNTs.6,7) However, thermal property measurements of SWNTs in experiments are still 
extremely challenging as there are potential uncertainties residing in the technicality for 
instance related to the contact resistances between thermal reservoirs and an SWNT. 
Uncertainties also arise in the identification of an isolated SWNT and its diameters. 
Therefore, reliable theories and numerical simulations are greatly demanded especially 
to investigate detailed heat conduction characteristics that are not yet accessible in 
experiments. One of such heat conduction characteristics with a practical importance is 
the size effect on thermal conductivity. In general, the size-dependence of thermal 
conductivity appears when the system characteristic length is smaller or comparable to 
the phonon mean free path.8) For SWNTs, due to the expected long phonon mean free 
path, the regime of the length effect stretches beyond the realistic length in many 
applications. The length effect has been demonstrated using molecular dynamics (MD) 
simulations9,10) and the power-law divergence was discussed with analogy to the 
low-dimensional models, where the hydrodynamic effect gives rise to the long-time heat 
flux correlation.11) More recently, the length dependence of thermal conductivity was 
investigated up to fully diffusive phonon transport regime using a kinetic approach12), 
where the divergence due to long wave-length phonons was shown to disappear with 
presence of the second order (or higher) 3-phonon scattering processes. The issue of the 
transition from the pure ballistic to diffusive-ballistic phonon transport has been 
discussed by modeling the energy transmission based on the ratio of the overall average 
phonon mean free path to L.13) 

This paper aims to demonstrate the ballistic diffusive transition of heat conduction 
in SWNTs at room temperature by calculating thermal conductivity for a range of 
lengths using non-equilibrium classical MD simulations. MD simulations are capable of 
handling phonon transport of all the phonon branches, unlike the kinetic approach with 
relaxation approximations.12) As shown later, this aspect is important for relatively short 



SWNTs with significant ballistic phonon transport, especially at room temperature, 
where a wide range of phonon branches are populated. 

 
2. Molecular Dynamics Model 
The carbon-carbon interactions were modeled using Brenner potential14) in a simplified 
form15) where the total potential energy of the system is expressed as, 
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Here, VR(r) and VA(r) are repulsive and attractive force terms, which take a Morse type 
form with a certain cut-off function. B*

ij represents the effect of the bonding order 
parameters. As for the potential parameters, we employ the set that has been shown to 
reproduce the linear phonon transport properties with sufficient accuracy.9,10) The 
velocity Verlet method was adopted to integrate the equation of motion with the time 
step of 0.5 fs. The application of classical approach is encouraged by the expected 
dominant contribution on the heat conduction from phonons compared with that from 
electrons.16,17) 

On simulating ballistic phonon transport using MD simulations, linear transport 
properties (group velocity) need to be reproduced with sufficient accuracy. This needs to 
be satisfied for phonons with a wide range of frequencies as their ballistic transport 
becomes important for short SWNTs at room temperature. Linear phonon transport 
properties can be visualized by the dispersion relations, which can be computed from 
MD simulations by taking the two-dimensional Fourier spectra of the time history of the 
one-dimensional velocity field along an SWNT. In Fig. 1, the spectra of a 25 nm (5, 
5)-SWNT at 300 K with the periodic boundary condition is presented together with 
corresponding phonon density of states (DOS). The phonon energy spectral density is 
computed as18), 

∑∑ ∑ ∫
−

=

−
⎥
⎦

⎤
⎢
⎣

⎡
=Φ

p N

n

tik
N
ni

dtetnve
N

mk
3

2
1

0
),(1

2
),(

α

ω
αω , ( zr ,,φα = ),  (2) 

where N is the number of atoms in the longitudinal (z) direction (the number of unit 
cells in the nanotube). p and m are the number of atoms per unit cell and the mass of a 
carbon atom, respectively. The data are discrete due to the finite length of the nanotube 
and the broadening of the spectral peaks indicates the thermal phonon scattering. The 
overall feature of dispersion relations obtained from MD simulations agrees with the 
reported theoretical models1,19), especially well with the mechanical model of Mahan 
and Jeon19). The phonon DOS g(ω) can be calculated from ∑Φ=

k
kg ),()()( ωωωηω h , 

where the equilibrium phonon distribution ωωη h/)( Tk B=  at the classical limit. 



Note, for SWNTs, as the number of phonon branches is determined by the number 
of atoms in a unit-cell, even armchair (or zigzag) SWNTs whose unit-cell contains 
fewer atoms than the other structures with similar diameters, the dispersion relation 
depicts diverse phonon branches, as seen in Fig. 1 for a (5, 5) SWNT. There are optical 
phonon modes with small circumferential wave number and low frequency that have 
similar dispersion characteristics and heat capacity to the acoustic ones, especially in the 
intermediate wavevector (k) regime. Although, acoustic modes may still possess the 
longest mean free path, the contribution of these optical modes is expected to become 
important when their mean free paths are comparable to L.  
 
3. Thermal Conductivity Calculations 

Thermal conductivity λ of an SWNT was measured with non-equilibrium MD 
simulations. After reaching an isothermal state at 300 K with the auxiliary velocity 
scaling control, the temperature controlled layers on both ends of the SWNT were 
activated to apply a temperature difference of 20 K. Eventually the system converges to 
a quasi-stationary state with linear temperature gradient. The simulation time ranges 
within 3-18 ns as the data-convergence time depends on the system size. By calculating 
the heat flux along the SWNT from the energy budgets of the thermostats, λ was 
calculated through the Fourier's law. The cross-sectional area A of an SWNT was 
defined using the ring of van der Waals thickness πbd, where b=0.34 nm. The validity of 
the temperature gradient 20 K for short SWNTs was examined by performing additional 
simulations for temperature gradient of 10 K in case of L=25 nm. The converged value 
of thermal conductivity was 236 W/mK compared to 223 W/mK for 20 K gradient case. 
Hence, the difference was confirmed to be small enough. The usage of thermal 
conductivity to express the heat conduction of the current system is arguable due the 
extensive ballistic heat transport. Furthermore, the definition of the area of an isolated 
SWNT is rather ambiguous. Although simply expressing the heat conduction with 
thermal conductance may be more suitable, here we use thermal conductivity for the 
sake of comparison with previous studies.  

On carrying out non-equilibrium MD simulations by locally applying thermostats to 
a crystal system, the interface between the temperature-controlled part and the rest of 
the system typically gives rise to a thermal boundary resistance (TBR). A TBR appears 
due to mismatching of lattice-vibrational spectra of the temperature controlled part and 
the rest of the system. The mismatching causes reflection of phonons and alters 
scattering dynamics at the interface. Since a TBR is expected to influence the local 
non-equilibrium phonon distribution and hence alter the thermal conduction, 
thermostats and their parameters need to be carefully selected to minimize the TBR.  

It is important to state that the TBR effect is not entirely a numerical artifact. For 



instance, in practical use of the lateral heat conduction of SWNTs to promote heat 
transfer, finite-length SWNTs would be bounded with connections to other materials. In 
this case, the heat conduction properties would be inevitably altered by TBRs at the 
connections. Therefore, in fact, it would be more realistic to examine the heat 
conduction of SWNTs with presence of such interfacial thermal resistances, though 
formulation of a general case would be difficult since such effects would be strongly 
case-dependent. In the current study, for the sake of comparison with other reported 
theoretical works and focusing on studying the intrinsic dynamics, we aim to construct 
an ideal case by minimizing the TBR effect. 

Firstly, the temperature gradient was applied using the phantom technique as in the 
previous works.9,10) Here, a phantom thermostat consists of a fixed layer and a phantom 
layer, which are both monolayer unit-cells. The phantom layer is placed between the 
fixed layer at the tube-end and the rest of the SWNT and control by the Langevin 
equation. Debye temperature of diamond was chosen as the damping parameter of the 
Langevin equation. The formulation aims to damp the phonons traveling into the 
phantom layer and hence to prevent the phonons from being reflected at the tube ends. 
Therefore, ideally, a phantom thermostat models isothermal layers with sufficient 
length.  

For SWNTs, the simulations using the phantom technique was validated by 
performing an additional set of simulations adopting standard Nose-Hoover (NH) 
thermostats20,21). A straightforward application of NH thermostat without any virtual 
dynamics makes the method simple and robust, though it is more expensive than the 
previous method. The thermostats have two tuning parameters; the length of the 
temperature controlled Lc and the relaxation time τ. Fig. 2 shows the temperature 
profiles obtained by using the NH thermostat for various values of Lc, where distinct 
TBRs can be observed as temperature jumps. For instance, in the case of Lc=0.01L, 
temperature jumps at the interfaces account for about 50% of the total temperature 
difference applied at both tube-ends.  

In order to minimize the TBRs, parameters Lc and τ were tuned. Influences of Lc and 
τ on the key thermal properties are described in Fig. 2-4. Elongation of Lc permits larger 
wavelength phonon modes and hence attenuates the discrepancy of phonon spectra 
between temperature-controlled part and the rest of the nanotube. This can be seen in 
the Lc-dependence of temperature profiles (Fig. 2), where the shorter Lc is, the larger 
TBRs are. More detail views are given in Fig. 3(a-c) which show Lc-dependences of the 
temperature gradient, heat flux and thermal conductivity. Both the temperature gradient 
and heat flux increased with Lc and eventually saturated at the upper limit Lc/L~1, 
independently of τ. The corresponding trend of λ is similar except for the value for 
Lc/L=0.01. Therefore, considering the computational cost, we approved Lc =0.5L as an 



optimal value. 
As for the relaxation time, longer τ is expected to give the temperature-controlled 

layers more time to adjust the spectrum to that of the rest of the SWNT. The variation of 
TBRs with respect to τ is shown in Fig. 4 for Lc =0.5L. The figure shows the sum of 
TBRs on the hot and cold sides R for various nanotube lengths, within the parameter 
bounds (40 fs<τ<4 ns) beyond which the quasi-linear temperature profile is significantly 
disturbed. Beyond the lower bound, the phonon spectra of temperature-controlled layers 
and the rest of the SWNT were found to exhibit severe mismatching. On the other hand, 
beyond the upper bound, the data hardly converged. The figure shows that R takes a 
minimum value for a critical relaxation time τcr. On varying L from 25 nm to 201 nm, τcr 
exhibits a moderate variation between 400 fs and 40 ps. On considering the observed 
trend that τcr increases with L, we take τ=40 ps as the optimal value. Note that an order 
difference in τ may result in approximately 10% difference in thermal conductivity.  
 
4. Length and Diameter Effects on SWNT Thermal Conductivity 

Figure 5 shows length effect on thermal conductivity of SWNTs for a range of L up 
to 1.6 μm. It can be seen that differences between the values obtained for (5, 5) SWNTs 
with the phantom technique (filled circles) and NH thermostats (open circles) are 
negligible. The overall trend of the slope ( L∂∂ /λ ) clearly indicates the gradual 
transition from strongly ballistic to diffusive-ballistic phonon transport. When all the 
phonons experience ballistic phonon transport, λ is proportional to L (constant thermal 
conductance). The asymptotic match of the gradients of the thermal conductivity 
profiles to that of the dashed line suggests dominant ballistic phonon transport at the 
small L limits. Note, on considering the significant phonon population in a range of 
phonon branches at room temperature, we expect contributions to the heat conduction 
not only from ballistic transport of acoustic phonon modes but also from that of various 
optical phonon modes in the small L regime. This is consistent with the results of MD 
realization of non-Fourier heat conduction in tens of nanometers long SWNTs, where 
the ballistic transport of collective optical phonons was observed to play an important 
role.18) The gradient L∂∂ /λ  gradually decreases as L increases since phonon mean 
free paths gradually become shorter relatively to L, i.e. diffusive phonon transport is 
gradually enhanced with respect to ballistic phonon transport. For both systems, thermal 
conductivity did not converge in the range of L explored in the current work up to about 
a micrometer. Furthermore, in connection with the discussion on the divergence of 
thermal conductivity11,12), one could fit power-law functions to the obtained profiles. As 
denoted in Fig. 5, by fitting power laws in L > 100 nm, we obtain exponents of 0.19 and 
0.33 for (5, 5) and (3, 3) SWNTs, respectively. The power-law length-dependence of 
thermal conductivity could be explained by the weak 3-phonon scattering of long 



wavelength phonons compromised by the higher order processes12), and/or the long time 
heat current correlations in low dimensions22). 

Let us now examine the diameter (d) dependence of SWNT thermal conductivity. 
For small L, where the phonon transport is dominantly ballistic, the thermal 
conductivity exhibits minor dependence on the diameter. The diameter-independence 
for small L is consistent with the above discussion that ballistic phonon transport is 
dominant in this regime. At the ballistic phonon transport limit, where all the populated 
phonons experience ballistic transport, thermal conductance is proportional to the 
number of atoms per unit cell, i.e. the diameter, if we ignore the variation of the linear 
phonon transport property (dispersion relations) due to the changes in the unit-cell size 
and the curvature. This means, with the current definition of A=πbd, that the thermal 
conductivity is independent of the diameter. As L increases, the diameter dependence 
becomes noticeable, where thermal conductivity profiles of (3, 3) and (5, 5) SWNTs 
deviate from each other beyond L~100 nm. Current results show that, in the large L 
regime, thermal conductivity is larger i.e. the diffusion effect is smaller for SWNTs with 
smaller d. The trend is consistent with the above mentioned candidates of origin of the 
power-law length dependence. The exponent of the thermal conductivity divergence due 
to the long wave-length phonons increases as d decreases 13) because of the variation in 
the phonon density of states. Similarly, the long time correlation22) is also expected to 
increase as d decreases due to the reduction of number of phonon-channels per length. 
The exact mechanism of the power-law length-dependence can not be identified from 
the present diameter-dependence of the exponent. Detailed examination of heat flux 
autocorrelation function in the equilibrium framework would be needed to discuss this 
aspect further. 
 
5. Conclusions 
Non-equilibrium MD simulations were conducted to investigate the heat conduction of 
SWNTs at room temperature. The length and diameter effects on the thermal 
conductivity were quantified in a range of L and for two different diameters. The 
gradual transition from nearly pure ballistic phonon transport to diffusive-ballistic 
phonon transport was clearly observed. In the small L regime with strong ballistic 
transport, there is a significant contribution to the heat conduction from a range of 
optical phonons. Consistent picture of ballistic phonon transport was obtained from the 
diameter dependence, where thermal conductivity is diameter-invariant for small L. In 
the regime of L with significant diffusive phonon transport, power-law length 
dependence was identified whose exponent increases with reducing diameter. In this 
regime, thermal conductivity of an SWNT shows power-law length-dependence does 
not converge even with a micrometer tube-length. 
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Figure captions 
 
Fig. 1 (a) Discrete phonon dispersion relations and (b) phonon density of states (DOS) 

of a 25 nm-long (5, 5) SWNT. The dispersion relations were obtained by 
computing the phonon energy spectral density from MD simulations18). 
Wavevector k-space is normalized by the Brillouin-zone width, aπ . In the 

current case with an armchair SWNT, a= ccA −3 , where ccA −  is the interatomic 

distance. The focused view (c) shows the phonon dispersion in the low 
frequency region for clarity. 

 
Fig. 2  Influence of the length of the layers controlled by Nose-Hoover thermostat (Lc) 

on the temperature profile (L=25 nm). 
 
Fig. 3 Influence of Lc/L and relaxation time of Nose-Hoover thermostat on the axial 

temperature gradient dT/dz, heat flux through the system Q and thermal 
conductivity λ. L=25 nm.  

 
Fig. 4 Influence of the relaxation time of Nose-Hoover thermostat on the sum of TBRs 

on the hot and cold sides for different values of L (Lc= 0.5L). The Dashed line 
marks τ=40 ps. 

 
Fig. 5 Length dependences of SWNT thermal conductivity with two different 

diameters. λp and λNH denote the values obtained by using phantom and 
Nose-Hoover thermostats, respectively. The error bars are based on the fitting 
residuals in the thermal conductivity calculations. Thermal conductivity profiles 
of (3, 3) and (5, 5) SWNTs in L>100 nm were fitted to power laws. Dashed line 
shows L∝λ  with an arbitrary slope. 
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