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Non-stationary heat conduction in a single-walled carbon nanotube was investigated by applying a 
local heat pulse with duration of sub-picoseconds. The investigation was based on classical molecular 
dynamics simulations, where the heat pulse was generated as coherent fluctuations by connecting a 
thermostat to the local cell for a short duration. The heat conduction through the nanotube was 
observed in terms of spatio-temporal temperature profiles. Results of the simulations exhibit 
non-Fourier heat conduction where the distinct amount of heat is transported in a wavelike form. The 
geometry of carbon nanotubes allows us to observe such a phenomenon in the actual scale of the 
material. The resulting spatio-temporal profile was compared with the available macroscopic 
equations so called non-Fourier heat conduction equations in order to investigate the applicability of 
the phenomenological models to the quasi-one-dimensional system. The conventional hyperbolic 
diffusion equation fails to predict the heat conduction due to the lack of local diffusion. It is shown 
that this can be remedied by adopting the model with dual relaxation time. Further modal analyses 
using wavelet transformations reveal a significant contribution of the optical phonon modes to the 
observed wavelike heat conduction. The result suggests that, in carbon nanotubes with finite length 
where the long wavelength acoustic phonons behave ballistic, even optical phonons can play a major 
role in the non-Fourier heat conduction. 
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1. INTRODUCTION 
 
The deviation of non-stationary heat conduction from 
the fully diffusive Fourier’s law description is known 
to become significant when time and length scales of 
the system are within certain temporal and spatial 
windows of relaxation [1]. The derivations of models 
for the non-Fourier heat conduction usually take 
either microscopic (phonon) or macroscopic 
(continuum) approach, but reach similar expressions 
that suggest the collective phonons or heat 
propagating in a wavelike form with a certain speed.  

In a typical macroscopic description, a 
well-known model of heat wave propagation was 
formulated by Cattaneo and Vernotte [2, 3], which 
gives rise to the conventional hyperbolic energy 
equation, 
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where heat is conducted as a wave whose amplitude 
decays with an effective relaxation time τ. Here, θ 
and α are temperature and thermal diffusivity, 

vcρλ / . The flexibility of the wave propagation 
models can be tuned by taking multiple timescales 
into account. For example, propagation of heat with 
two relaxation timescales can be expressed as  
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The expression can be derived by expanding the heat 
flux and temperature gradient with different 
relaxation times τq and τθ respectively [4]. At the 
limit of τθ=0, the expression is reduced to Eq. (1). In 
contrast to the hyperbolic equation, with the 
additional final term expressing the local diffusion of 
the heat wave, Eq. (2) exhibits various types of 
non-stationary heat conduction; wavy, wavelike, and 
fully diffusive heat conduction depending on the 
relaxation parameters [5]. 
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In terms of phonons, the heat wave can be 
considered to be the extension of the second sound, 
i.e. the sound propagation in phonon gas, but with 
relaxation and dissipation due to the excess Umklapp 
phonon scattering or other momentum losing 
processes [6]. Starting from the phonon Boltzmann 
transport equation, one can derive a similar 
expression as Eq. (2) involving two relaxation times 
of normal (momentum conserved) and Umklapp 
(momentum non-conserved) scattering, τN and τR 
[1,7].  
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where c is the group velocity. Eq. (3) can be reduced 
to Eq. (2) through the relations; Rq ττ = , 

32
Rvv ccc τραρλ ==  and 59 Nττθ = . Although 

the microscopic relation is consistent with the 
macroscopic counterpart, there are still remaining 
issues such as the relevancy of the condition τ N=0 for 
Eq. (3) to reduce to the hyperbolic equation where 
the heat conduction would be characterized solely by 
τR, or the revisiting conceptual problem of heat 
propagation at infinite speed due to the local 
diffusion term in Eq. (2) [1]. Therefore, the 
connection between the microscopic description of 
wavelike heat conduction and the phenomenological 
macroscopic relations has not been completely 
established. 

The study of heat wave has a long history as the 
vast early literature was reviewed by [1]. One of the 
successes in the previous works was the prediction 
and demonstration of the second sound. Furthermore, 
theoretical analyses of second-sound mode under 
linear approximation revealed that the speed of 
second sound in the isotropic three-dimensional 
material is 3Dcc =  [8, 9], where cD is the Debye 
speed of sound )( kkcD ωω =∂∂= . While most of 
the theories are limited to systems with weak 
nonlinearity, Tsai and MacDonald [10] were the first 
to perform molecular dynamics (MD) simulations to 
examine the propagation of a heat wave under 
strongly anharmonic conditions. Despite the 
fundamental difference from the linear theories, they 
showed that the observed phenomenon is strikingly 
similar to the ones by linear analyses. Later, Volz 
et.al [11] performed MD simulations of thermally 
perturbed solid argon and compared the results with 

the Cattaneo-Vernotte equation. The temporal 
evolutions of thermal energy exhibited large 
discrepancy within the time duration of relaxation. 

While the non-Fourier heat conduction has 
caught many early attentions as a controversial 
phenomenon of fundamental physics in heat transfer, 
the practical importance of this classical problem has 
been recently enhanced due to the development of 
high speed laser techniques and nano-scale materials. 
In the situations where sub-pico seconds heat pulse is 
generated by ultra-fast pulsed lasers on nanomaterials, 
the finite relaxation time of the heat transport can 
have a significant impact on the overall heat transfer 
[12]. In the currently work, we take an extreme case 
by applying a local heat pulse with duration of 
sub-picoseconds to a single-walled carbon nanotube 
(SWNT). By using classical molecular dynamics 
simulations, we investigate the non-Fourier heat 
conduction of an SWNT under anharmonic effects. 
Phonons of a pure SWNT are expected to possess a 
long mean free path due to the quasi-one-dimensional 
nature and the absence of defective and boundary 
scatterings, hence impact of such non-Fourier heat 
conduction may be significant in the real scale. 

In the current paper, we first demonstrate the 
observation of heat waves in an SWNT. Then we 
validate the relevancy of above mentioned different 
macroscopic expressions in the nanoscale system. 
Finally, the collective phonon waves are further 
characterized by modal analyses and the active roles 
of optical phonons are demonstrated. 

 
2. MOLECULAR DYNAMICS 

SIMULATIONS 
 
The molecular dynamics simulations were 

performed for a 25 nm long (5,5) single-walled 
carbon nanotube subjected to periodic boundary 
conditions. The carbon-carbon interactions were 
expressed by the Brenner potential [13] with the 
simplified form [14] where the total potential energy 
of the system is expressed as, 
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Here, VR(r) and VA(r) are repulsive and attractive 
force terms which take the Morse type form with a 
certain cut-off function. B*

ij represents the effect of 
the bonding order parameters. As for the potential 
parameters, we employ the set that was shown to 
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Fig. 1. A (5,5)-SWNT subjected to a heat pulse on a local m unit-cells located at the 
center of the periodic computational domain. The inset denotes the temperature response 
of the local heat region to the Nose-Hoover thermostat with relaxation time of 4 fs. 
Typical values of m and L are 6 and 25nm, respectively. 

reproduce the force constant better (table 2 in [13]). 
With this potential function, it has been demonstrated 
that the dispersion relations of the SWNTs can be 
successfully reproduced with acceptable discrepancy 
[15, 16]. The velocity Verlet method was adopted to 
integrate the equation of motion with the time step of 
0.5 fs.  

The heat pulse was applied to a local region 
which consists of m consecutive unit-cells around the 
center of the SWNT by connecting the region to a 
Nose-Hoover thermostat [17, 18] kept at Tp, for a 
time duration of 0.4 ps (Fig. 1). The system responds 
to the thermostat with the relaxation time of 4 fs. 
After disconnecting the thermostat, the system is kept 
with constant total energy. As our intention is to 
apply and observe only the heat in the nanotube and 
not the stress (pressure) waves, both excitation and 
sampling were done in terms of the coherent 
molecular motions by canceling the total momentums 
of both the bulk and the heated region. The absence 
of non-thermal contribution of purely acoustic and 
coherent waves was confirmed by calculating the 
mean local velocity [11]. We consider the adiabatic 
condition after the heating and the coherency of the 
excitation to be essential to study the phenomena in 
the framework of heat transfer. In this sense, the 
methodology of the current work is non-trivially 
different from that of the recent demonstration of the 
second sound in a carbon nanotube by Osman and 
Srivastava [19]. In the current paper, we present the 
results for the temperatures (Tb, Tp) = (50 K, 1000 K). 
The bulk temperature Tb is above the lower limit of 

the kinetic region, [15], where we expect 
the system to be strongly anharmonic. Even so, T

1−∝ Tα
b is 

low enough to violate the quantum limit of realistic 
system where the reduction of the heat capacity is 
significant, thus the current model system serves to 
highlight the classical molecular dynamics of the heat 
conduction. Simulations, though not presented in the 
current paper, were also carried out for the room 
temperature and qualitatively similar phenomena 
were observed but dimmed due to enhanced thermal 
phonon scattering.  

The local instantaneous temperature for each 
unit-cell is defined through the kinetic energy as 
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with kb as the Boltzmann constant. To compute the 
temperature at a z-location, the energy was averaged 
over a unit-cell which consists of n=20 atoms 
[(5,5)-SWNT]. The temperature profile was 
computed from ensembles of typically 40 simulations 
with different random initial condition in order to 
attenuate the noise.  

The computational cell was subjected to the 
periodic boundary condition. Therefore, the 
simulation models an infinitely long SWNT with 
local heat pulse applied at every L, the length of the 
SWNT. The length L is 25 nm, long enough to 
acquire sufficient data before phonons collide 
through the periodic boundary.  
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3. RESULTS AND DISCUSSIONS 

 
3.1. Observation of wavelike heat conduction  
 

The isotherm contours shown in Fig. 2 (a) depict 
the overall spatio-temporal history of the temperature. 
Here, each contour is computed by taking ensemble 
averages of the data from 40 MD simulations. The 
picture shows how the heat supplied at the origin 
diffuses over the field. Figures 2 (b)-(d) show the 
isotherms for longitudinal, radial and circumferential 
components, respectively. The results of the 
simulations for (Tb, Tp) = (50 K, 1000 K) exhibit the 
heat wave of collective phonons traveling from the 
centered heated region of the SWNT towards the 
boundaries. As for the width of the perturbed cell, we 
performed the simulations for m=6 and 12, which 
resulted in a minute difference. Note that, although a 
wide range of wave vector components are perturbed 
by the pulse with width m, there should be certain 
distribution with the characteristic wavevector given 
by ma cc−3π , where ac-c is the interatomic 
distance.  
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The propagation characteristics of phonons can be 
well-understood from the dispersion relations as 
shown in Fig. 3. The dispersion relations can be 
computed by taking the two-dimensional Fourier 
spectra of the time history of the one-dimensional 
velocity field along the SWNT. Here, the results are 
presented as the energy density in (ω,k)-space  
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where N is the number of atoms in z-direction, i.e. 
the number of unit-cells in the nanotube. The velocity 
vector is projected to the local cylindrical coordinates 
( zr ,,φ ) denoted by the subscript α in Eq. (6). The 
energy density was first computed for each 
directional component then summed to obtain the 
overall dispersion relation shown in Fig. 3. Here, 
k-space is normalized by the width of the 
Brillouin-zone of the (5, 5)-SWNT, cca −3π , and 
denoted with k*. In the current case with an armchair 
SWNT, a unit-cell is an armchair-shaped monolayer. 
The data are discrete due to the finite length of the 
nanotube and the broadening of the spectral peaks 

indicates the phonon scattering. As demonstrated in 
[15, 16], the dispersion relation can also be computed 
from displacements from the equilibrium positions 
which, unlike the current method, would reflect the 
population distribution of phonons. The current 
method using velocity, due to the simplicity in 
projecting the velocity vector to the unit-cell based 
local cylindrical coordinates, enables us to obtain 
clearer view compared with the previous method for 
the whole energy range. Fig. 3 (a) is drawn to provide 
close-ups of the low frequency and wavevector 
regime capturing the key phonon branches; LA 
(longitudinal acoustic mode), TW (twisting acoustic 
mode), F (flexure mode [20]) together with three low 
frequency optical phonon branches. The sketch on 
the top indicates the assignment of the branches. The 
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Fig. 2. Spatio-temporal isotherms of a 
(5,5)-SWNT subjected to a heat pulse at the origin. 
(a) overall temperature, (b) longitudinal 
component, (c) radial component and (d) 
circumferential component. Solid lines indicate cD 
and dashed lines the propagation speed of heat 
waves. The temperature is logarithmically scaled 
for the contours. Relative scales of the contour 
amplitudes among the figures are arbitral. 
(Tb,Tp,m)=(50 K, 1000 K, 6). 



value of cD for the LA and TW can be estimated as 
17 km/s and 11 km/s, respectively. As for the 
degenerated F branch, we compute the group velocity 
of the quasi-linear regime (0.1<k*<0.4). Denoting 
this group velocity with cD for convenience, we 
estimate cD =7 km/s 

In Fig. 2, the group velocity cD is denoted with 
the solid lines. These long wavelength acoustic 
phonons travel without decaying until they collide 
with the counter-propagating ones through the 
periodic boundary, which suggests that their mean 
free paths are equivalent to or larger than L/2. The 
observation of fully ballistic transport of 
long-wavelength acoustic phonons agrees with the 
reported divergence of the thermal conductivity with 
respect to the length in the current range of tube 
length [15, 16]. In Fig. 2(a), an interesting feature of 
the contour plot is the energy transported with slower 
group velocity than cD visualized as streaks stretching 
from near the origin to both positive and negative 
z-directions. The phonons forming the heat flux 

possess dominant energy among all the phonons, yet 
exhibit smaller group velocity than cD. The 
decomposed isotherms [Fig. 2(b-d)] show that the 
observed heat wave is the superposition of heat 
waves of different directional components. As 
denoted with dashed lines, the collective phonons 
clearly exhibit the wavelike nature. Comparing the 
dimensional energy intensity of the heat waves, the 
radial heat wave (HR) contains approximately double 
the energy of the longitudinal heat wave (HL) and the 
circumferential component plays a minor role. The 
propagation speeds of the heat waves are cHL=8 km/s 
and cHR=4 km/s.  

 
3.2. Comparison with macroscopic non-Fourier 
heat conduction equations  
 

Now, we carry out quantitative analyses by fitting 
the obtained results to the Cattaneo and Vernotte’s 
hyperbolic equation [Eq. (1)] and the dual relaxation 
timescale model [Eq. (2)]. As a consequence, the 
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Fig. 3. Phonon dispersion relation of a 25 nm-long (5, 5)-SWNT. The dispersion relation was 
obtained by computing the energy density. Wavevector k* is normalized with the Brillouin-zone 
width cca −3π , where  is the length of c-c bonds. (a) provides a focused view of (b) on cca −

the lower frequency regime. The top sketch depicts the assignments to the phonon branches: 
LA, TW and F indicate the longitudinal acoustic, twisting acoustic and flexure modes [20]. LO 
and TO indicate longitudinal and transverse optical modes. The subscript s denotes modes with 
sth lowest frequency (at k=0) 
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attempts to fit T to the equations fail due to the 
existence of separately conducted two major heat 
fluxes. In Fig. 4, longitudinal profiles of the 
dimensionless temperature pTT /=θ  are plotted for 
different time. The figure exhibits how the initial 
distribution (t*=0) splits into (I) a regime with slower 
fully diffusive conduction and (II) a regime with 
faster quasi-ballistic conduction (t*=0.32). More 
continuous view of the two separated heat flux is 
available in Fig. 2 (a) where, in addition to HL, there 
is a heat flux with comparable energy propagating 
with negligible group velocity. As it will be shown 
later, this consists of the high frequency optical 
phonons excited by the heat pulse with broad 
temporal spectral band. It would be possible to 
capture the fully diffusive heat flux by further 
generalizing Eq. (2), however in order to focus on the 
heat flux that resides in the heat wave, instead we 
simply take the radial component which has the 
leading contribution to the overall wavelike heat 
conduction. In the radial component, the separation 
of heat flux observed for the longitudinal component 
does not appear. Fig. 5 demonstrates the 
spatio-temporal comparison of the theories and the 
temperature field, θr(z,t) computed from the radial 
velocity in MD simulation. As it was illustrated in the 
isotherm contours of the radial component [Fig. 2(c)], 
the simulation results show a clear deviation from the 
usual exponential profile predicted by the Fourier’s 
law and the wavelike nature is observed. The 
solutions of both equations were obtained by 
numerically solving initial value problems with the 
periodic boundary conditions. The initial condition, 
θr(z,t=t0) was taken from MD simulations, where 
t0=0.4 ps is the time when θr(z=0,t) takes the 
maximum value. The dimensionless time is defined 
as t*=2(t-t0)cHR/L. The dimensionless variables are 
denoted by asterisk hereafter and are normalized by 
the length scale L/2 and timescale L/2cHR. The fitting 
carried out to minimize the mean squared error 
integrated over the time period of 0<t*<0.5, where 
t*=0.5 is roughly the time when the fastest acoustic 
phonons crosses the periodic boundary. Note that for 
Eq. (1), α is given by cHD

2τ hence τ is the only fitting 
parameter, whereas for Eq. (2), α is taken into the 
fitting parameter together with τq and τθ. As a 
consequence, we obtain τ*=0.3, τq*=0.2 and τθ*=0.035, 
where the timescale L/2cHR =3.14 ps. As shown with 
the dotted line in Fig. 5, the hyperbolic equation [Eq. 
(1)] exhibits considerable deviation from the MD 
results (marked with circles) due to the lack of local 

diffusion around the peak. The fitting can be 
significantly improved by the additional relaxation 
term in Eq. (2) as seen in the solution denoted by the 
solid lines. At t*~0.48, the solution of Eq. (2) near the 
wave front begins to deviate slightly from the MD 
simulation results as the wave front approaches the 
periodic boundary.  

 
3.3. Modal analyses  
 

Since the values of cHR and cHL extracted from the 
isotherm contours in Fig. 2 roughly match the 
relation 3Dcc = , it is tempting to conclude that 
these heat waves can be considered in analog with 
the second sound of the low frequency acoustic 
modes. However, following the derivation of the 
Landau expression, in this quasi-one dimensional 
system, one would expect the speed of the heat wave 
to be considerably higher since the propagation speed 
of heat wave should scale with inverse of square root 
of the number of dimensions [9, 10]. Therefore, it is 
essential to perform modal analyses and investigate 
which phonons contribute to the heat wave. 
Considering the nanoscale length of the SWNT with 
the expectedly long phonon mean free path, Debye 
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Fig. 4. The dimensionless temperature θ=T/Tp of 
half (positive z) of a (5,5)-SWNT at t*=0.0, 0.16, 
0.32 and 0.48 where the timescale is 3.14 ps. The 
arrows mark regions with (I) slower diffusive heat 
conduction and (II) faster non-Fourier heat 
conduction. 
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approximation may be too simple to describe the 
evolutions of broad phonon bands excited by the 
local heat pulse. On carrying out a modal analysis on 
such intermittent phenomena, the wavelet technique 
is useful as it allows us to follow the instantaneous 
spectrum altering in time. In contrast to the fast time 
Fourier transform, the wavelet transform, since the 
shape of the mother wavelet is frequency-invariant i.e. 
the timescale of the window is frequency dependent, 
can be tuned to capture the relaxation time that 
generally becomes small with increasing frequency. 
Here, the temporal wavelet transformation was 
performed on a time signal obtained from a single 
carbon atom using the Morlet wavelet [21], 
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as the mother wavelet, where ∆t is the characteristic 
width of the wavelet. The mother wavelet was chosen 
to possess sufficient frequency localization and 
symmetry. By repeatedly performing the 
transformation for all the carbon atoms, one can 
obtain temporal spectra of each velocity component 
for the entire spatio-temporal field.  
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Consequently, we define the spectral temperature as, 
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The power spectrum P is ensemble averaged value of 
10 numerical experiments and P0 denotes the 
spectrum at equilibrium. The data are averaged over 
a unit-cell with n molecules to project the spectrum 
to the one-dimensional space. 

In figures 6 and 7, the results are presented as 
temporal sequences of spectral contours in the 
(f,z)-field for longitudinal and radial components, 
respectively. The input heat pulse excites a wide 
range of frequency components. Note that since the 
nanotube is initially excited to a strongly 
non-equilibrium state, the phonon population is far 
off the statistical phonon distribution at equilibrium. 
Such state with high phonon populations in the high 
frequency optical branches can also be observed on 
subjecting a nanotube to optical excitations. The 
receptivity of an SWNT to the local excitation 
reflects the phonon density of state of the nanotube. 
As a consequence, for instance for the longitudinal 
component, major energy is distributed to the band 

around 50 THz, an optical phonon branch of the 
in-plane lattice vibration [15, 16]. However, due to 
the small group velocities of the phonons in this band, 
the heat flux hardly propagates and merely diffuses at 
around z=0. This is in fact the main contributor to the 
fully diffusive heat flux with negligible group 
velocity observed in Fig. 2(a). On the other hand, in a 
broad range of lower frequency in both longitudinal 
and radial components (Fig. 6 and 7), there are 
energy fluxes that show distinct propagation, which 
is best observed in the local spectral peaks detaching 
from the center (z=0) and traveling toward the 
boundary. The trend is most evident in the distinct 
energy around 9 THz in the radial component (Fig. 7), 
which corresponds to the band of large local density 
of states [15, 16]. The propagation speed of the band 
peak, marked with triangles in the figure, was found 
to correspond with cHR. The peak frequency, 9THz, 
approximately corresponds to the frequency of the 
transverse acoustic phonons at the Brillouin-zone 
boundary, and since phonons with such short 
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Fig. 5. Temporal sequences of the dimensionless 
temperature profile of HR. Circles: MD results. 
Dotted lines: The hyperbolic wave equation [Eq. 
(1)] with τ*=0.3. Solid lines: dual time scale 
equation [Eq. (2)] with τq*=0.2 and τθ*=0.035.  



wavelength can be considered to carry minute heat, 
the major energy of the present heat wave should 
reside in the transverse optical phonons. These 
wavelet transformed spectra also serve to visualize 
various channels of phonon band to band energy 
transport. For instance, in Fig. 6, an energy transport 
channel from the high frequency band of the in-plane 
lattice vibration (~50 THz) to lower frequency bands 
can be observed. The relatively long tail of the 
energy transport of longitudinal phonons around 18 
THz suggests that there is energy feed from other 
frequency bands, presumably the above mentioned 
phonons of the in-plane lattice vibration. 

The current results show that the optical phonons 
may play a significant role in non-Fourier heat 
conduction of carbon nanotubes subjected to local 
coherent phonon excitations. The optical phonons are 
usually considered to be poor heat carrier in bulk heat 
conduction due to their relatively small group 
velocity in long wavelength regime and small 
relaxation time. However, the dispersive relations of 
the SWNT show that, in intermediate range of the 
normalized wavevector 0.1<k*<0.9, some of the 
phonon branches, especially the ones with relatively 
low frequency, have group velocity comparable to 
the acoustic branches. Unfortunately, the current 

analysis does not allow us to detect the spatial mode 
of the heat flux, hence we are not able to specify or 
weigh the contributions from certain phonon 
branches. Nevertheless, with the sufficiently high 
group velocity together with the relatively large 
relaxation time due to the quasi-one-dimensional 
structure, the heat conduction length-scale of optical 
phonons, cτ, falls in the order of the realistic length 
of SWNTs in actual application devices. 

It is worth noting that there is certainly energy in 
the low frequency acoustic modes excited by the heat 
pulse. As mentioned above, they form the transport 
front of the heat flux in each directional component. 
Although these phonons are expected to dominate the 
heat conduction of longer carbon nanotube due to 
their large relaxation time and group velocities, the 
modal analyses show that these phonons do not 
contribute to the visible collective phonon transport 
observed in the current SWNT with relatively short 
length. Judging from the observation that these 
phonons exhibit fully ballistic transport, it is possible 
that the lower limit of the second sound criteria τN<t 
[7] was not satisfied for these phonons, i.e. there is 
not sufficient normal phonon scattering to sustain the 
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 Fig. 7. Temporal sequence of spectral temperature 
computed by wavelet transformations θp(f,z,t) of 
radial velocity component. Figures (a-d) denote the 
spectra at (a) t*=0.032, (b) 0.25, (c) 0.48 and (d) 0.73. 
Note that the current frequency range (~30THz) 
captures the entire energy range for the radial 
component [15, 16]. 

Fig. 6. Temporal sequence of spectral temperature 
computed by wavelet transformations θp(f,z,t) of 
longitudinal velocity component. Figures (a-d) 
denote the spectra at (a) t*=0.032, (b) 0.25, (c) 0.48 
and (d) 0.73. 
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connection between phonons as a collective waves. If 
this is the case, there is a possibility to observe heat 
waves based on low frequency acoustic phonons in 
system by either increasing the system timescale or 
decreasing τN. This can be realized by simulating 
longer nanotubes or under higher temperature, 
respectively. 

 
4. CONCLUSIONS 

 
The non-Fourier heat conduction was 

investigated in SWNTs subjected to a local heat pulse 
with time duration of sub-picoseconds, using 
molecular dynamics simulations. In the system with 
quasi-one-dimensional thermal properties, we have 
demonstrated that the distinct heat flux is conducted 
in a wavelike form. The evolution of the wavelike 
propagating heat flux can not be predicted by the 
convectional hyperbolic wave equation due the 
influence of the local diffusion. This essence can be 
captured by the taking dual relaxation timescale into 
account. The results show that the spatio-temporal 
evolution of the wavelike heat conduction in the 
SWNT with nanoscale length can be well described 
by the phenomenological macroscopic relation. The 
modal analyses using wavelet transformations show 
that the major contribution to the wavelike heat 
conduction comes from the optical phonon modes 
with sufficient group velocity and probably with 
wave vectors in the intermediate regime.  
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