Tuesday 23.10.2012 Tokyo University, Tokyo

Mechanism of nitrogen-doped SWCNT growth

Toma Susi, Stefan Taubert, Giorgio Lanzani, Kari Laasonen, Albert Nasibulin, Esko Kauppinen

Outline

- Background
 - Nitrogen doping of SWCNTs
- Experimental
 - Floating catalyst with CO & NH₃
- DFT mechanism study
 - CO & NH₃ reactions
- DFTB MD simulation
 - Role of nitrogen
- Conclusions

Background

Background

Experimental DFT mechanism study **DFTB MD simulation**

Conclusions

Why dope with nitrogen?

 p-type
 n-type

 -1e⁻
 +1e⁻

 B
 C
 N

 O
 O
 O

 84
 76
 71

Covalent atomic radius in pm

- Controlling SWCNTs chirality very difficult
- Heteroatom substitution introduces donor/ acceptor states near Fermi level = doping¹
- N donor (+1 e⁻), B acceptor (-1 e⁻)
 - Intrinsic p-doping in air, n more difficult
- N-MWCNTs since 1994,² SW only recently
- A couple of good reviews^{3,4}
- N-graphene has gained wide recent interest (e.g. large n-doping and band gap opening)⁵

[1] J.Y. Yi and J. Bernholc, Phys. Rev. B 47 (1993) 1708
[2] O. Stephan *et al.*, Science 266 (1994) 1683
[3] C.P. Ewels and M. Glerup, JNN 5 (2005) 1345
[4] P. Ayala *et al.*, Rev. Mod. Phys. 82 (2010) 43
[5] D. Usachov *et al.*, Nano Lett. 11 (2011) 5401

Synthesis – MWCNx

- First synthesis of N-doped MWCNTs in 1997¹
 - Pyrolysis of liquid or solid C-N compounds: metal pthalocyanines, pyridine, acetonitrile, melamine²... N concentration < 10%
- PE-CVD or HF-CVD under N₂ or NH₃ gases³
- Spray pyrolysis of metallic salts with organic precursors⁴; N concentration up to 30%
- And many, many more...
- Characteristic "bamboo" structure
- N concentration higher in internal layers and compartments

[1] Yudasaka et al, Carbon (1997)
 [3] Kurt et al, Carbon (2001)
 [2] Terrones et al, APL (1999)
 [4] Glerup et al, Chem Comm. (2003)

Synthesis – SWCNx

- N-SWCNT synthesis much more difficult still not that many papers
- Arc discharge of melamine-doped graphite rods under nitrogen¹
- CVD using acetonitrile², benzylamine³, pyridine⁴, and water-plasma CVD⁵ using NH₃ have also been successful
- Laser ablation of C-Ni:Y target under nitrogen atmosphere⁶
- Catalyst selection, support and reactor atmosphere important for good product⁷

Proposed growth model

N atoms induce local curvature which closes tube?

Sumpter, Int. J. Quantum. Chem. 109 (2009) 97

Proposed growth model

C.P. Ewels et al., "*Nitrogen and boron doping in carbon nanotubes*" (in Chemistry of Carbon Nanotubes, 2007):

"To further complicate the discussion [...] most groups when synthesising doped nanotubes use **complex molecules as their carbon and nitrogen feedstock**, and even mixtures of molecules. This significantly complicates the issue, particularly since to date **no studies** that we are aware of have been **aimed at elucidating the mechanism** whereby feedstock molecules are broken down."

N atoms induce local curvature which closes tube?

Sumpter, Int. J. Quantum. Chem. 109 (2009) 97

Phys. Status Solidi B 247, Nos. 11–12, 2726–2729 (2010) / DOI 10.1002/pssb.201000312

Nitrogen-doped SWCNT synthesis

doi:10.1002/pssb.20100312

Toma Susi^{**,1}, Zhen Zhu¹, Georgina Ruiz-Soria², Raul Arenal³, Paola Ayala², Albert G. Nasibulin^{*,1}, Hong Lin^{3,4}, Hua Jiang¹, Odile Stephan⁵, Thomas Pichler², Annick Loiseau³, and Esko I. Kauppinen^{***,1}

doi:10.1021/cm200111b

ARTICLE

Nitrogen-Doped Single-Walled Carbon Nanotube Thin Films Exhibiting Anomalous Sheet Resistances

Toma Susi,^{*,†} Antti Kaskela,[†] Zhen Zhu,[†] Paola Ayala,[‡] Raul Arenal,^{§,||} Ying Tian,[†] Patrik Laiho,[†] Juha Mali,[†] Albert G. Nasibulin,[†] Hua Jiang,[†] Giorgio Lanzani,^{⊥,#} Odile Stephan,[∇] Kari Laasonen,^{#,○} Thomas Pichler,[‡] Annick Loiseau,[§] and Esko I. Kauppinen^{*,†}

Experimental

Background

Experimental

DFT mechanism study

DFTB MD simulation

Conclusions

HWG reactor

- Reactor temperature 890°C (optimum for long bundles)
- CO used as carbon precursor, CO₂ as etchant
- 0 to 300 ppm NH₃ as the nitrogen source
 - Diluted with Ar to control very low amounts
- Catalyst particles from resistively heated iron wire, current ~2.7 A

Nanoparticle production in a hot wire generator

NanoMaterials Group

School of Science

Formation mechanism?

NH₃ (ppm)	N content (at. %)		Mean diameter
	EELS	XPS	
0	-	-	1.4±0.3
100	1.2	0.2	1.2±0.3
200	1.7	0.7	1.1±0.2
300	-	1.1	1.1±0.2

Susi et al., Chem. Mater. 23 (2011) 2201

- How does N affect the growth process and the properties of the tubes?
- Why is N enriched in tubes: from 100 ppm (0.001%) in gas to ~0.2% (and locally >1%)?
- Ultimate goal: tune the process to get certain N-SWCNTs with desired properties?
 - Diameter reduction, chirality control?
 - N-content tuning, control of doping configurations, distribution?

How does the chemistry work in the early stages of the CVD?

COMMUNICATION

doi:10.1021/ja1087634

The Use of NH_3 to Promote the Production of Large-Diameter Single-Walled Carbon Nanotubes with a Narrow (*n*,*m*) Distribution

Zhen Zhu, Hua Jiang,* Toma Susi, Albert G. Nasibulin, and Esko I. Kauppinen*

Phys. Status Solidi B 247, Nos. 11–12, 2708–2712 (2010) / DOI 10.1002/pssb.201000226

Mechanism study of floating catalyst CVD synthesis of SWCNTs

Giorgio Lanzani^{*,1,2}, Toma Susi³, Paola Ayala⁴, Tao Jiang⁵, Albert G. Nasibulin³, Thomas Bligaard⁵, Thomas Pichler⁴, Kari Laasonen^{**,2}, and Esko I. Kauppinen^{***,3}

doi:10.1002/pssb.201000226

Cite this: Phys. Chem. Chem. Phys., 2011, 13, 11303–11307

www.rsc.org/pccp

PAPER

Mechanism of the initial stages of nitrogen-doped single-walled carbon nanotube growth[†]

Toma Susi,^{*a} Giorgio Lanzani,^{bc} Albert G. Nasibulin,^a Paola Ayala,^d Tao Jiang,^e Thomas Bligaard,^e Kari Laasonen^{cf} and Esko I. Kauppinen^{*a}

doi:10.1039/C1CP20454H

Static DFT mechanism study

Background Experimental DFT mechanism study

DFTB MD simulation

Conclusions

The best candidate for our study (biggest that we can use) is Fe₅₅ in a supercell of 21 Å x 21 Å x 21 Å. μ_{tot} = 136 μ B (almost on Z axis).

Aalto University School of Science

- Grid-based projector-augmented plane wave DFT Python code^{1,2}
- Real-space uniform grids and multigrid methods, parallelization over k-points, spins, bands + domain-decomposition
 - O(N³), scales efficiently²
- Nudged elastic band method^{3,4}
 to estimate the reaction barriers
 - Neglects entropy contribution
- Catalyst assumed static (=solid)

CSC

The hypothesis come from analogous study on the flat surface:

- D. Borthwick et al, Surf. Sci 602 (2008) 2325;
- M.P. Andersson et al, J. of Catal. 255 (2008);
- X.Y. Liao et al, Catal. 269 (2007) 169;
- D.E. Jiang et al, Surf. Sci 570 (2004) 167.

[1] G. Lanzani et al., PSSb 247 (2010) 2708

CO dissociation

[1] G. Lanzani et al., PSSb 247 (2010) 2708[2] G. Lanzani et al., J. Phys. Chem. C 113 (2009) 12939

CO dissociation

[2] G. Lanzani et al., J. Phys. Chem. C 113 (2009) 12939

CO dissociation & mobility Barrier = + 0.06 eV Barrier = + 0.17 eV Hollow Hollow (on the edge ΔE = - 0.04 eV (on the center ΔE = + 0.04 eV of the facet) of the facet) Bridge

[1] G. Lanzani et al., PSSb 247 (2010) 2708[2] G. Lanzani et al., J. Phys. Chem. C 113 (2009) 12939

NH₃ reactivity

This reactivity is already well studied on flat surfaces:

- G. Ertl in Catalytic Ammonia Synthesis, Plenum, New York (1991), p. 109.
- P. Stoltze and J.K. Nørskov.
 Phys. Rev. Lett. 55 (1985), p. 2502.
- Á. Logadóttir and J. K. Nørskov J. Catalysis 220 (2003), p. 273.

Input: 500 ppm NH₃

NanoMaterials Group

Aalto University School of Science

NH₃ dissociation Barrier = +0.40 eV $\rm NH_3$ on D $\downarrow \Delta E = -0.52 \text{ eV}$ NH_2 on C H on E

NH₃ dissociation

Experimentally: 0.43 eV (tandem mass spec & FTIR) T. Susi et al., PCCP 13 (2011) 11303

NH₃ dissociation & mobility

Experimentally: 1.51 eV (tandem mass spec & FTIR) T. Susi et al., PCCP 13 (2011) 11303

THE JOURNAL OF PHYSICAL CHEMISTRY

Article

pubs.acs.org/JPCC

dx.doi.org/10.1021/jp306376r

Initial Stages of Growth of Nitrogen-Doped Single-Walled Carbon Nanotubes

Stefan Taubert and Kari Laasonen*

DFTB MD simulation study

Background Experimental DFT mechanism study

DFTB MD simulation

Conclusions

Method

NanoMaterials Group

School of Science

What did they do?

- DFTB/MD simulations* (collinear magnetic moments)
- Dissociated N and C atoms on Fe₅₅
 - 4 N atoms, and
 27, 37, 47, 54, 65 C atoms
 - Short CNT models
 - 4, 5, 6, 7 N atoms, and 137, 147 C atoms

* SCC-DFTB with DftbPlus Program, NVT, velocity-Verlet, time step 2 fs T=1000 K (Berendsen thermostat), simulated time 0.1-0.4 ns

Very short (~1ps) DFT/MD to confirm qualitatively the DFTB picture (GPAW program, PBE functional, NVT, 1000 K, 2 fs time step)

Monomers and small fragments

- Small fragments shortlived especially at high adatom coverage
- Site change freq:
 - C atom 35-70 ps
 - N atom 40-70 ps
 - C₂ dimer 10-22 ps
 - CN unit 6-14 ps

Time-evolution of the number of small fragments

Monomers and small fragments

- Structures DFT-optimized
- N monomers reside at deep sites, 3- and 4-coordinated
- CN units point out of surface, C₂ align along it
- Longer chains attach to surface at terminal C, mid chain released from surface

Large fragments

- Large fragments modify the particle surface strongly
- Fragment growth is fast when the adatom coverage is large
- 5-membered rings formed first
- N orient out of the surface when terminal atoms

NanoMaterials Group

School of Science

Role of nitrogen

N atom introduces a (7,7,5) defect

Role of N in ring formation

(a) 69.5ps

(d) 77.5ps

(b) 70.6ps

(e) 80.5ps

(g) 108.9ps

(c) 71.2ps

(f) 99.9ps

NanoMaterials Group

Role of nitrogen

(a) 90.4ps

(b) 93.8ps

(c) 97.2ps

(d) 98.1ps

(f) 112.6ps

CN unit coupled via N (negative partial charge) to the carbon network

Mechanisms

- Behavior of Ncontaining fragment
 - N out of surface
 - Fragment added
 - 5-ring formed
 - sp² hybridization
 → planarity →
 N along surface

Mechanisms

- Ring formations
- Unstable 4-ring →
 5-ring; chain-to-chain condensation
- N-containing 6-ring, end-to-chain condensation
- Another 6-ring, end-to-chain cond.

Tentative growth model

Tentative growth model

Tentative growth model

+ STABILITY OF DOPANTS?

Acknowledgements

Giorgio Lanzani, Kari Laasonen (DFT)

Stafan Taubert Kari Laasonen (DFTB)

Thank you.

AMd Tao Jiang, Thomas Bligaard

Esko Kauppinen Albert Nasibulin

SUNCAT CENTER FOR INTERFACE SCIENCE AND CATALYSIS

http://physics.aalto.fi/nanomat/

Fourteenth International Conference on the Science and Applications of Nanotubes

24-28 June 2013 Dipoli Congress Center, Espoo, Finland www.nt13.org

