

Quantum Chemical Molecular Dynamics Simulations of SWNT Nucleation and Growth on Iron and Nickel

Stephan Irle

Institute for Advanced Research and Department of Chemistry Nagoya University, Nagoya Japan

GCOE for Mechanical Systems Innovation (GMSI) Seminar The University of Tokyo, Tokyo, December 2, 2009

Japan Science and Technology Agency

📙 Prof. Keiji Morokuma

Students and PD fellows:

Kyoto University

Dr. Guishan Zheng^a

Dr. Yoshiko Okamoto

Dr. Alister J. Page

Dr. Ying Wang

Nagoya University 🕮 🛲

Dr. Zhi Wang

^anow: Department of Chemistry, Harvard University

^bnow: Professor, Nara Women's University

http://kmweb.fukui.kyoto-u.ac.jp/nano

http://qc.chem.nagoya-u.ac.jp

Outline

- Review: Experiments and previous theoretical modeling
- Density-functional tight-binding (DFTB) method
- > All-carbon cap nucleation and growth on iron particles
- Comparison of growth mechanisms between iron and nickel catalysts
- Simulation of early stages during ACCVD (C₂H₂ and OH on iron catalyst)
- Summary and outlook

Outline

- Review: Experiments and previous theoretical modeling
- Density-functional tight-binding (DFTB) method
- > All-carbon cap nucleation and growth on iron particles
- Comparison of growth mechanisms between iron and nickel catalysts
- Simulation of early stages during ACCVD (C₂H₂ and OH on iron catalyst)
- Summary and outlook

Irreversible Steps of Giant Fullerene Formation

Review

Cage Size Abundances

Experimental sizes of fullerene cages ...

Cage Size Abundances

... explained by Shrinking Hot Giant Road

CNT Growth on Carbides

"Unusual" Case: CNT Growth from *C-face* SiC Surface During High-Temp. Vacuum Evaporation

Graphene Growth on Carbides

But: Graphene Growth from *Si-face* SiC Surface During High-Temp. Vacuum Evaporation

Review

"They [nanotubes and nanowires] have to have reproducible properties, and we're not in that situation at the present time; you can make various types of nanotubes and study the properties of them but at the moment we don't have the control to produce the nanotubes with accurately specified diameter, structure, chirality, you name it."

Sir Harry Kroto in D. J. Palmer, Where nano is going, *Nano Today* **3**, 46 (2008)

Review

SWNT Growth Control

Recent advancements in SWNT growth control

Diameter control:

≻C. Lu and J. Liu, Controlling the Diameter of Carbon Nanotubes in Chemical Vapor Deposition Method by Carbon Feeding, J. Phys. Chem. B 110, 20254 (2006)

H. Shinohara and coworkers: Synthesis of single-wall carbon nanotubes grown from size-controlled Rh/Pd nanoparticles by catalyst-supported chemical vapor deposition, *Chem. Phys. Lett.* **458**, 346 (2008)

Chirality control:

➢D. E. Resasco, R. B. Weisman, and coworkers, Narrow (n,m)-Distribution of Single-Walled Carbon Nanotubes Grown Using a Solid Support Catalyst, *J. Am. Chem. Soc.* **125**, 11186 (2003)

Many others ...

SWNT Growth Control

Other improvements

◆High yield:

K. Hata, D. Futaba, *et al.* Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes, *Science* **306**, 1362 (2004)

Defect control:

S. Maruyama *et al.*, Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, *Chem. Phys. Lett.* 360, 229 (2002)

Length control:

L. X. Zheng *et al.*, Ultralong single-wall carbon nanotubes, *Nature Mater.* **3**, 673 (2004)

Many other groups and improvements ...

so-called "supergrowth"

Review

SWNT Growth Control

But ... How to put the puzzle pieces together?

Experimental Growth Studies

Review

Look here ... in situ environmental TEM studies of SWNT nucleation and growth F. Ding, et al.

$Fe/SiO_2 C_2H_2:H_2 T=600^{\circ}C$ Fluctuating solid Fe_3C

H. Yoshida, *et al.* Atomic-Scale In-situ Observation of Carbon Nanotube Growth from Solid State Carbide Nanoparticles, *Nano Lett.* **8**, 2082 (2008)

Ni/SiO₂ C₂H₂:NH₃ T=480 to 700°C Fluctuating solid **pure nickel**

S. Hofmann, *et al.* In-situ Observations of Catalyst Dynamics during Surface-Bound Carbon Nanotube Nucleation, *Nano Lett.* **7**, 602 (2007)

SWNT Growth N-dimensional "Parameter Space"

Review

Previous Car-Parrinello Molecular Dynamics (CPMD) Heroic efforts on supercomputers, one-shot simulations!

J.-Y. Raty *et al,* Growth of Carbon Nanotubes on Metal Nanoparticles: A Microscopic Mechanism from *Ab Initio* Molecular Dynamics Simulations, *Phys. Rev, Lett.* **95**, 096103 (2005)

Change from diamond structure (sp³) to fullerene cap (sp²) immediately!

simulation time~10 ps Too short to demonstrate self-assembly

Nano-diamond: Inappropriate model!

Reactive Empirical Bond Order (REBO) MD Classical potential, cheap, allows many long simulations!

Bond order potential allows bond breaking via potential switching functions, but does not include effects of π -conjugation or charge transfer

REBO/MD Simulations

Review

Specific problems of REBO MD for SWNT growth

•Problem 1: large number of non-hexagon rings!

REBO does not discriminate between aromatic or antiaromatic rings →Unrealistically many 4- and 8membered rings (formally antiaromatic)

> F. Ding *et al.*, *J. Phys. Chem. B*, **108**, 17369 (2004)

Problem 2: polyynes are underrepresented

Important for self-healing of graphitic sheets ⇒Very slow transformation processes G. Zheng, SI, M. Elstner, K. Morokuma, J. Phys. Chem. A **108**, 3182 (2004)

•Problem 3: sp³ defects overestimated

→Amorphous structure formation

•N. A. Marks *et al.*, *Phys. Rev. B* 65, 075411 (2002)
•SI, G. Zheng, Z. Wang, K. Morokuma, *J. Phys. Chem. B* 110, 14531 (2006)

Outline

- Review: Experiments and previous theoretical modeling
- Density-functional tight-binding (DFTB) method
- > All-carbon cap nucleation and growth on iron particles
- Comparison of growth mechanisms between iron and nickel catalysts
- Simulation of early stages during ACCVD (C₂H₂ and OH on iron catalyst)
- Summary and outlook

DFTB

History

Density-Functional Tight-Binding (DFTB)

Extended Hückel type method using atomic parameters from DFT (PBE, GGA-type), diatomic repulsive potentials from B3LYP

• Seifert, Eschrig (1980-86): STO-LCAO;

2-center approximation

Porezag, Frauenheim, *et al.* (1995):
 efficient parameterization scheme: *NCC-DFTB*

Gotthard Seifert

rt Thomas Frauenheim

- Elstner et al. (1998): charge self-consistency: SCC-DFTB
- Köhler et al. (2001): spin-polarized DFTB: SDFTB

Self-Consistent-Charge Density-Functional Tight-Binding (SCC-DFTB)

M. Elstner et al., Phys. Rev. B 58 7260 (1998)

Approximate density functional theory (DFT) method!

Second-order Taylor expansion of variational DFT energy in terms of atomic reference density ρ_0 and charge fluctuation $\rho_1 (\rho \approx \rho_0 + \rho_1)$ yields:

$$E[\rho] = \underbrace{\sum_{i}^{\text{valence}} n_i \langle \phi_i | \hat{H}[\rho_0] | \phi_i \rangle}_{1} + \underbrace{\sum_{i}^{\text{core}} n_i \langle \phi_i | \hat{H}[\rho_0] | \phi_i \rangle}_{2} + \underbrace{E_{\text{xc}}[\rho_0]}_{3} - \underbrace{\frac{1}{2} \int_{\mathbf{R}^3} \rho_0 V_H[\rho_0]}_{4} - \underbrace{\int_{\mathbf{R}^3} \rho_0 V_{\text{xc}}[\rho_0]}_{5} + \underbrace{\frac{1}{2} \int_{\mathbf{R}^3} \rho_1 V_H[\rho_1]}_{6} + \underbrace{\frac{1}{2} \int_{\mathbf{R}^3} \rho_1 V_H[\rho_1]}_{7} + \underbrace{\frac{1}{2} \int_{\mathbf{R}^3} \frac{\delta^2 E_{\text{xc}}}{\delta \rho_1^2} \Big|_{\rho_0}}_{8} \rho_1^2 + o(3)$$

Density-functional tight-binding (DFTB) method is derived from terms 1-6 (zero-order terms)

Self-consistent-charge density-functional tight-binding (SCC-DFTB) method is derived from terms 1-8 (zero- & second-order terms)²¹

DFTB and SCC-DFTB methods

where

OFTR

- > n_i and ε_i occupation and orbital energy of the *i*th Kohn-Sham eigenstate
- \succ E_{rep} distance-dependent diatomic repulsive potentials
- > Δq_A induced charge on atom A
- > γ_{AB} distance-dependent charge-charge interaction functional; obtained from atomic chemical hardness $\eta_{AA} = 1/2(IP_A EA_A)$

SCC-DFTB: general comparison with experiment

Performance for small organic molecules (mean absolut deviations)

- Reaction energies: ~ 5 kcal/mol
- Bond lenghts: ~ 0.014 A°
- Bond angles: ~ 2°
- Vibrational frequencies: ~6-7 %

Self-consistent-charge density-functional tightbinding (SCC-DFTB)

D. Porezag, Th. Frauenheim, T. Köhler, G. Seifert, R. Kaschner, *Phys. Rev. B* **51**, 12947 (1995) M. Elstner *et al., Phys. Rev. B* **58**, 7260 (1998)

Second order-expansion of DFT total energy with respect to charge fluctuation

TB-eigenvalue equation
$$\sum_{v} c_{vi} \left(H_{\mu v} - \varepsilon_{i} S_{\mu v} \right) = 0 \quad \begin{array}{c} \text{Single-zeta} \\ \text{STO basis set} \end{array}$$
$$E_{tot} = 2 \sum_{i} f_{i} \varepsilon_{i} + E_{rep} \left(+ \frac{1}{2} \sum_{\alpha \beta} \gamma_{\alpha \beta} \Delta q_{\alpha} \Delta q_{\beta} \right)$$

Finite temperature approach (Mermin free energy *E*_{Mermin}) M. Weinert, J. W. Davenport, *Phys. Rev. B* **45**, 13709 (1992)

$$f_{i} = \frac{1}{\exp\left[\left(\varepsilon_{i} - \mu\right)/k_{B}T_{e}\right] + 1}$$

$$f_{e}: \text{ electronic temperature} \\ S_{e}: \text{ electronic entropy} \\ 0 \le f_{i} \le 1$$

$$E_{Mermin} = E_{tot} - T_{e}S_{e}$$

$$S_{e} = -2k_{B}\sum_{i}^{\infty} f_{i}\ln f_{i} + (1 - f_{i})\ln(1 - f_{i})$$

$$Atomic \text{ force}$$

$$\vec{F}_{\alpha} = -2\sum_{i} f_{i}\sum_{\mu\nu} c_{\mu i}c_{\nu i} \left[\frac{\partial H_{\mu\nu}^{0}}{\partial \vec{R}_{\alpha}} - \left(\varepsilon_{i} - \frac{H_{\mu\nu}^{1}}{S_{\mu\nu}}\right)\frac{\partial S_{\mu\nu}}{\partial \vec{R}_{\alpha}}\right] - \Delta q_{\alpha}\sum_{\xi}^{N} \frac{\partial \gamma_{\alpha\xi}}{\partial \vec{R}_{\alpha}}\Delta q_{\xi} - \frac{\partial E_{rep}}{\partial \vec{R}_{\alpha}} 24$$

DFTB

Y. Ohta, Y. Okamoto, SI, K. Morokuma, Phys. Rev. B 79, 195415 (2009)

[1]: PW91: An ultrasoft pseudopotential with a plane-wave cutoff of 290 eV for the single metal and the projector augmented wave method with a plane-wave cutoff of 400 eV for the metal cluster 25 {2} Fe-Fe and Fe-C DFTB parameters from: G. Zheng *et al., J. Chem. Theor. Comput.* **3**, 1349 (2007)

Outline

- Review: Experiments and previous theoretical modeling
- Density-functional tight-binding (DFTB) method
- > All-carbon cap nucleation and growth on iron particles
- Comparison of growth mechanisms between iron and nickel catalysts
- Simulation of early stages during ACCVD (C₂H₂ and OH on iron catalyst)
- Summary and outlook

All-carbon simulations

Continued Growth

Continued Growth

•Very fast C atom supply

All-carbon simulations

Continued Growth

30

40

Y. Ohta, Y. Okamoto, SI, K. Morokuma, ACS Nano 2, 1437 (2008)

Self-healing process of sidewall (annealing) Fe-Carbon mobility at interface important!

Trajectory 6: T_n = 1500 K, T_e = 10k K, C_{int} = 1500 K

All-carbon simulations

Continued Growth

Relationship between ring type and length

All-carbon simulations

Continued Growth

Continued SWNT growth as function of

temperature ((5,5) armchair SWNT)

10 Trajectories for 3 temperatures

T[°C]	727	1227	1727
Growth rate [pm/ps] ^a	3.48	5.07	4.13
Chain carbons ^a	3.9	0.3	0.2
SWNT C atoms ^a	112.9	110.1	102.7

^aaveraged over 10 trajectories/T

Y. Ohta, Y. Okamoto, SI, K. Morokuma, *J.* 33 *Phys. Chem. C*, **113**, 159, (2009).

T=727°C

T=1727°C

10 Trajectories after 45 ps

(a) 10 Trajectories after 45 ps

(b) Encapsulation of Fe by polyyne (b) Dissociation of C₂ from Fe/C

All-carbon simulations

Continued Growth

Using (8,0) seed SWNT

(8,0) zigzag

length = 7.1 Å

diameter = 6.3 Å

fcc Fe_{38}

 $H_{10}C_{62}Fe_{38}$

Cap Fragment Formation

Y. Ohta, Y. Okamoto, A. J. Page, SI, K. Morokuma, ACS Nano 3, 3413 (2009)

Cap Fragment Formation

Y. Ohta, Y. Okamoto, A. J. Page, SI, K. Morokuma, ACS Nano 3, 3413 (2009)

Cap Fragment Formation

Y. Ohta, Y. Okamoto, A. J. Page, SI, K. Morokuma, ACS Nano 3, 3413 (2009)

Y. Ohta, Y. Okamoto, SI, K. Morokuma Carbon 47, 1270 (2009)

DFTB/MD

Y. Ohta, Y. Okamoto, SI, K. Morokuma, Phys. Rev. B **79**, 195415 (2009)

During growth, non-hexagonal rings and polyyne chains frequently formed and then rearrangement of sp² network occurs to construct carbon sidewall.

Outline

- Review: Experiments and previous theoretical modeling
- Density-functional tight-binding (DFTB) method
- > All-carbon cap nucleation and growth on iron particles
- Comparison of growth mechanisms between iron and nickel catalysts
- Simulation of early stages during ACCVD (C₂H₂ and OH on iron catalyst)
- Summary and outlook

Dr. Alister J. Page

Comparison of $M_{38}C_{40}$ +nC and $M_{55}C_{40}$ +nC Growth

Adhesion energies x 10 [eV]

Cap growth methodology:

- SCC-DFTB/MD
- MD: T_n = 1500 K, T_e = 10,000 K, Δt =1 fs
- Velocity-Verlet integration
- Nosé-Hoover chain thermostat
- All trajectories replicated x 10
- Carbon supplied to Cap-M_x boundary.
- Carbon supplied @ 1 C / 0.5 ps ("fast") and @ 1 C / 10 ps ("slow")

Metal & Size Effect

Cap Growth on Fe55

"Fast" growth on M₅₅C₄₀+nC: M=Fe

0 ps

10

20

Time (ps)

30

40

50

14

13

12

11

8

0

25 ps, 50 C's 50 ps, 100 C's

A. Page, S. Minami, Y. Ohta, SI, K. Morokuma, submitted

Metal & Size Effect

Cap Growth on Ni55

"Fast" growth on M₅₅C₄₀+nC: M=Ni

A. Page, S. Minami, Y. Ohta, SI, K. Morokuma, submitted

Comparison of M₅₅C₄₀+nC

Average Growth and Ring Addition Statistics:

A. Page, S. Minami, Y. Ohta, SI, K. Morokuma, submitted

Correlation with Stability of Ni_{55} - C_n Chains:

Corresponding Behaviour of M₅₅ Catalysts:

Zhou et al., JCP, 116, 2323, (2002).

46

⇒ SWNT growth rate increases using Ni₅₅, compared to Fe₅₅.
(Experiment: Ni-catalysts decompose feedstock (CH₄) faster than Fe-catalysts...)
Mora & Harutyunyan, JPCC, 112, 4805, (2008).
Ermakov *et al.*, Catal. Today, 77, 225, (2002).

Cap Growth on M_x

Size Effect: M₃₈/M₅₅C₄₀+nC

A. Page, S. Minami, Y. Ohta, SI, K. Morokuma, submitted

Summary: Cap growth on M_x

- SWNT growth simulated using M_x catalysts (M = Fe, Ni; x = 38, 55).
- Effect of catalyst composition and size determined.
- Correlations between SWNT growth rate/mechanism and TM-C adhesion energies observed.
- Ni-catalyzed SWNT growth mechanism established using QM/MD.

Outline

- Review: Experiments and previous theoretical modeling
- Density-functional tight-binding (DFTB) method
- > All-carbon cap nucleation and growth on iron particles
- Comparison of growth mechanisms between iron and nickel catalysts
- Simulation of early stages during ACCVD (C₂H₂ and OH on iron catalyst)
- Summary and outlook

Dr. Ying Wang

Acetylene CVD Polymerization Α В С Initial model: Fe₃₈ t = 0 ps 10 ps Annealed at 1500 K Annealed at 30 C₂H₂'s 1500 K 80 ps 30 ps 10 geometries are randomly sampled between 5 and 10 ps for ten trajectories.

Polyacetylene formation, largest carbon cluster: C₁₀H_x

C-C Bond formation

Stationary Points

Acetylene CVD

Species formed

Trajectory	Last cluster	on cluster	off cluster
А	Fe ₃₈ H ₃₃ C ₃₈	$HC(2);C_{2}(1);H_{5}C_{7}(1);H_{4}C_{4}(3);H_{3}C_{3}(1);HC_{2}(1);H_{5}C_{8}(1);H(1);H_{4}C_{2}(1)$	$H_4C_2(2);H_2C_2(8);H_3C_2(1)$
В	$Fe_{38}H_{26}C_{36}$	$H_5C_5(1);H_3C_7(1);HC_2(4);H(3);C_2(3);H_4C_5(1);H_2C(1);H_5C_4(1)$	$H_4C_2(5); H_2C_2(7)$
С	$Fe_{38}H_{40}C_{42}$	$C_{2}(2);H_{6}C_{6}(1);H_{2}C_{4}(1);HC_{2}(2);H_{2}C_{2}(3);H_{4}C_{2}(1);H(2);H_{3}C2(1);H5C_{2}(1);H_{4}C_{4}(1);H_{6}C_{8}$ (1)	$H_4C_2(1);H_2C_2(8)$
D	$Fe_{38}H_{42}C_{44}$	$H_{5}C_{6}(1);H_{3}C_{3}(1);H_{3}C_{6}(1);H_{6}C_{6}(1);C_{2}(2);H_{2}C_{2}(2);H(1);H_{2}C_{4}(1);H_{4}C_{3}(1);H_{3}C_{2}(3);H_{5}C_{2}$ (1)	$H_4C_2(1);H_2C_2(7)$
E	$Fe_{38} H_{42}C_{44}$	$\begin{array}{l} H_{9}C_{10}(1);H_{7}C_{8}(1);H_{2}C_{3}(1);H_{3}C(1);HC(1);H_{2}C_{2}(3);H_{3}C_{2}(1);H_{2}C_{5}(1);H_{3}C_{4}(1);HC_{2}\\ (1);H_{5}C_{2}(1) \end{array}$	$H_4C_2(1);H_2C_2(7)$
F	Fe ₃₈ H ₃₅ C ₃₈	$H_2C_2(2);C_2(2);H_3C_2(3);H_5C_2(1);H_5C_8(1);H_7C_8(1);H_3C_4(1);HC_2(1);H(1)$	$H_2C_2(10);H_5C_2(1)$
G	Fe38H31C37	$HC_{2}(6);H_{4}C_{6}(1);H_{3}C_{3}(2);H_{8}C_{6}(1);H(1);H_{2}C_{3}(1);H_{4}C_{4}(1)$	$H_2C_2(6);H_3C_2(1);H_4C_3(1);H_6C_4(1)$; $H_4C_2(1)$
Н	Fe38H34C38	$HC_{2}(4);H_{2}C_{2}(2);H_{6}C_{9}(1);H(1);H_{5}C_{6}(1)H_{2}C(1);H_{4}C_{2}(1);H_{3}C_{4}(1);H_{5}C_{4}(1);$	$H_4C_2(2);H_2C_2(9)$
Ι	Fe38H27C34	$H_{3}C_{2}(1);HC_{2}(3);H_{7}C_{8}(1)C_{2}(1);H_{3}C_{4}(1);H_{2}C_{2}(2);H(1);H_{2}C_{4}(1);H_{4}C_{4}(1)$	$H_5C_4(1);H_4C_2(2);H_3C_2(2);H_2C_2(7)$
J	Fe38H19C31	$H_2C_2(1);C_2(2);HC_2(6);H(2);H_3C_6(1);H_4C_4(1);H_2C_3(1)$	$H_4C_2(3);H_6C_3(1);H_2C_2(9);H_5C_2(1)$

Outline

- Review: Experiments and previous theoretical modeling
- Density-functional tight-binding (DFTB) method
- > All-carbon cap nucleation and growth on iron particles
- Comparison of growth mechanisms between iron and nickel catalysts
- Simulation of early stages during ACCVD (C₂H₂ and OH on iron catalyst)
- Summary and outlook

Summary

Our hypothesis

We found:

mobility)

Growth at base is chaotic
Annealing from pentagon to hexagons takes place "very slowly"
Weaker C-M adhesion strength allows faster growth (higher C

\rightarrow

(n,m) chirality already established in outer tube area imprints hexagon addition pattern *during annealing*

Summary

• First-ever cap nucleation from bare particle and carbon molecules observed in quantum chemical simulations by slow surface diffusion (Y-junction and pentagon-first mechanism)

- Cap nucleation very similar to fullerene cage nucleation, slowed down by presence of metal cluster (immobility of C_2 and polyynes)

 During growth, M/C interface region develops short to longer polyyne chains, picks up carbon and forms 5/6/(7) rings ("arms of the octopus")

- In continued growth simulations, SWNT (n,m) **chirality NOT preserved!** "Chaotic" growth *caused by rapid carbon supply.*

- Pentagon-hexagon-only growth achieved by **slower** surface diffusion or addition, **defect annealing** on the order of 10's of ps.

Summary

•Growth on Ni faster than Fe, due to lower adhesion energy, Ni less likely to form carbide

- Cap nucleation very similar to fullerene cage nucleation, nucleation and growth slowed down by presence of metal cluster (immobility of C_2 and polyynes) with increasing C-M adhesion

- diffusion limits growth speed with particle size on simulation time scales

Acetylene decomposition slow due to H removal bottleneck

- H migration slow on carbon, fast on Fe
- H removal mechanism unknown, ideas?
- Role of oxygen is to oxidize, both carbon and iron

Present DFTB/MD Simulations

Future Simulations

Outlook

Challenge to Experimentalists:

Can you synthesize edge-oxidized caps of specific type and diameter, attach specific-size metal catalyst, and grow (n,m)-specific tube? (similar to Smalley's continued growth but with caps instead of tubes)

from: Kataura et al. Carbon 38, 1691 (2000)

Note: we do not endorse this mechanism, Only the picture!

Thank you

Funding :

- Suppose Science and Technology Agency CREST grant in the Area of High Performance Computing for Multiscale and Multi-physics Phenomena
- JST Tenure Track Funding by MEXT MSCF (to SI)

Computer resources :

- Research Center for Computational Science (RCCS), Okazaki Research Facilities, National Institutes for Natural Sciences.
- Academic Center for Computing and Media
 Studies (ACCMS), Kyoto University

Acetylene-Accelerated Alcohol Catalytic Chemical Vapor Deposition Growth of Vertically Aligned Single-Walled Carbon Nanotubes J. Phys. Chem. C 2009, 113, 7511–7515

Rong Xiang,[†] Erik Einarsson,[†] Jun Okawa,[†] Yuhei Miyauchi,[‡] and Shigeo Maruyama*,[†]

Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, and Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan

Received: November 28, 2008; Revised Manuscript Received: March 12, 2009

Addition of only 1% acetylene into ethanol was found to enhance the growth rate of single-walled carbon nanotubes (SWNTs) by up to 10-fold. This accelerated growth, however, only occurred in the presence of ethanol, whereas pure acetylene at the same partial pressure resulted in negligible growth and quickly deactivated the catalyst. The dormant catalyst could be revived by reintroduction of ethanol, indicating that catalyst deactivation is divided into reversible and irreversible stages. Since the thermal decomposition of ethanol also yields some amount of acetylene, the possible contribution to the formation of SWNTs from these decomposed gases is also discussed.

