Floating Catalyst CVD Method for Controllable Synthesis of Single- and Double-walled Carbon Nanotubes

# **Hui-Ming Cheng**

Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences





### Where am I from?



# Main Directions at my Division

- Synthesis, Properties and Applications of Carbon Nanotubes and Non-Carbon Nanostructures
  - Carbon Nanotubes
  - Non-Carbon Nanostructures
- New Materials for Clean Energy Applications
  - Energy storage materials
  - Solar energy materials
- Exploration of Hydrogen Storage Materials
- Fabrication and Applications of High-performance Carbon Materials

# Main Directions at my Division

- Synthesis, Properties and Applications of Carbon Nanotubes and Non-Carbon Nanostructures
  - Carbon Nanotubes
  - Non-Carbon Nanostructures
- New Materials for Clean Energy Applications
  - Energy storage materials
  - Solar energy materials
- Exploration of Hydrogen Storage Materials
- Fabrication and Applications of High-performance Carbon Materials

# Outline



- Synthesis of CNTs by Floating Catalyst CVD (SWNTs, DWNTs, MWNTs)
- Structural Control of SWNTs and DWNTs
  - The effect of sulfur, carrier gas, and carbon feeding rate
  - Synthesis of CNTs with narrow diameter distribution
- Growth mechanism of SWNTs/DWNTs by FCCVD
- Concluding remarks

# **Potential Applications of CNTs**



### Large Scale

- ✓ Field emitters
- ✓ Energy storage
- ✓ Composites

### Individual

- ✓ Electronic devices
- ✓ STM/AFM tips
- ✓ Sensors



## Electronic Structure --- Structural Control



R Saito et al., Appl. Phys. Lett. 60(1992) 2204 . R Saito et al, Phys. Rev. B 61(2000) 2981.



- Development of low-cost, large-scale processes for the synthesis of high-quality CNTs
- Control over the structure and electronic properties of CNTs
- Control over the location and orientation of CNTs on a flat substrate
- Development of a thorough understanding of the growth mechanism of CNTs



### **Arc Discharge Method**

### **Laser Ablation Method**





Developed by S lijima (Nature 1993)



#### Developed by RE Smalley group

(A Thess et al, Science 1996)

## Growth of SWNTs by CVD method





H.J. Dai, et al., Chem. Phys. Lett. 1996



• ...

### Floating Catalyst CVD Method (FCCVD)





✓ Potential for continuous preparation

- ✓ Possibility of structural control
- ✓ Low cost, high purity
- ✓ Simple post-treatment

HM Cheng et al., Appl. Phys. Lett. 72 (1998) 3282.HM Cheng et al., Chem. Phys. Lett. 289 (1998) 602.







HM Cheng et al., Chem. Phys. Lett.289 (1998) 602.

### **TEM Images of the SWNTs by FCCVD**





### Synthesis of DWNTs by FCCVD







WC Ren, HM Cheng et al., Chem. Phys. Lett. 359 (2002) 196.

# CNFs/MWNTs with Different Diameter and Wall Thickness



- **Carbon feeding rate**
- **Catalyst particle size**
- **Sulfur concentration**

YY Fan, HM Cheng et al., Carbon 38 (2000)789.YY Fan, HM Cheng et al., Carbon 38 (2000) 921.YY Fan, HM Cheng et al., J. Mater. Res. 13 (1998) 2342.

# Outline



- Synthesis of CNTs by Floating Catalyst CVD (SWNTs, DWNTs, MWNTs)
- Structural Control of SWNTs and DWNTs
  - The effect of sulfur, carrier gas, and carbon feeding rate
  - Synthesis of SWNTs with narrow diameter distribution
- Growth mechanism of SWNTs/DWNTs by FCCVD
- Concluding remarks

The Effect of Sulfur-- **Necessary**?



### Ferrocene & Argon

# Without the addition of sulfur Without additional carbon



Low productivity



### The effect of Sulfur on the Purity and Quality of SWNTs



with sulfur

#### without sulfur



- Higher purity
- Higher quality and narrower distribution

### The Effect of Sulfur on the Diameter Distribution of SWNTs





• Broad diameter distribution!

### The Effect of Sulfur on Diameter and Shell Number





Sulfur addition increasing

WC Ren, HM Cheng et al., J. Nanosci. Nanotech. 6 (2006) 1339.

# **Sulfur** plays an important role in the structural control (diameter and shell number ) of CNTs

**I**MR



### Hydrogen is beneficial to the synthesis of **Diameter Narrowly-distributed SWNTs**



2.8

2.4

2.8



### **Low carbon feeding rate** is beneficial to the synthesis of Narrowly-distributed SWNTs



#### **Carbon source: Methane**



### **Aligned DWNT ropes by FCCVD**





WC Ren, HM Cheng et al., J. Phys. Chem. B 109 (2005) 7169.

### **Typical HRTEM Images of DWNTs**





### **RBM Mapping of DWNT Ropes**

![](_page_25_Picture_1.jpeg)

![](_page_25_Figure_2.jpeg)

**Narrow diameter distribution** 

# Outline

![](_page_26_Picture_1.jpeg)

- Synthesis of CNTs by Floating Catalyst CVD (SWNTs, DWNTs, MWNTs)
- Structural Control of SWNTs
  - The effect of sulfur, carrier gas, and carbon feeding rate
  - Synthesis of SWNTs with narrow diameter distribution
- Growth mechanism of SWNTs/DWNTs by FCCVD
- Concluding remarks

### Structural Correlation between SWNTs and the Attached Catalyst Particles

![](_page_27_Picture_1.jpeg)

![](_page_27_Figure_2.jpeg)

- The size of catalyst particles : > 5nm
- The diameters of SWNTs or DWNTs: < 3 nm (in general)</li>
- SWNTs growth on the localized region of the surface of catalyst

Localized nucleation on big catalyst particles

WC Ren, HM Cheng et al., J. Phys. Chem. B 110 (2006) 16941.

### Structural Correlation between SWNTs Bundles and the Attached Catalyst Particles

![](_page_28_Picture_1.jpeg)

### Localized nucleation on big catalyst particles

### **Tip Structure of SWNTs at the Initial Nucleation Stage**

![](_page_29_Picture_1.jpeg)

![](_page_29_Picture_2.jpeg)

### Formation of the cap structure

Bending of graphite islands on the localized zone
of the surface of catalyst particles

# Role of Sulfur on the Formation of the Small Caps

![](_page_30_Picture_1.jpeg)

![](_page_30_Picture_2.jpeg)

![](_page_30_Picture_3.jpeg)

### VLS growth mechanism

 Precipitation of carbon from the localized liquid zone

### The role of sulfur

- Decreasing melting point of localized zone
  - Key point for the localized nucleation (the diameter of CNTs is closely correlated with the addition amount of sulfur)
- Enhancing the decomposition of carbon sources
  - Inhibit the continuous extending of graphite islands
- Introduction of defects in the graphite islands
  - Enhance the bending of graphite islands and consequently nucleation

### **Proposed Growth Model**

![](_page_31_Picture_1.jpeg)

### Sulfur-assisted localized nucleation at low temperature

![](_page_31_Figure_3.jpeg)

WC Ren, HM Cheng et al., J. Phys. Chem. B 110 (2006) 16941.

# **Concluding Remarks**

![](_page_32_Picture_1.jpeg)

- Developed a floating catalyst CVD method for the synthesis of SWNTs and DWNTs
- Attempted the diameter and shell number control of CNTs
- Obtained SWNTs and DWNTs with narrow diameter distribution
- Proposed a localized nucleation model for the growth of SWNTs and DWNTs by FCCVD

## Acknowledgment

![](_page_33_Picture_1.jpeg)

- Dr. Wencai Ren
- Dr. Feng Li
- Mr. Qingfeng Liu
- Mr. Bilu Liu
- Prof. M Dresselhaus at MIT
- NSFC, MOST, and CAS for financial support

![](_page_33_Picture_8.jpeg)

JSPS for supporting this visit

# Thank you very much for your attention!

![](_page_34_Picture_1.jpeg)

![](_page_34_Picture_2.jpeg)