Shigeo Maruyama The University of Tokyo

Let's assume that number density of citation N(t) decays by exponential function as

$$N(t) = A \exp(-\frac{t}{\tau}) \tag{1}$$

Here, number of citations during t \sim t+dt is N(t)dt. Prefactor A and decay time τ are specific to each paper. Then, the expected life-time number of citations C_{fin} is expressed as

$$C_{fin} = \int_0^\infty N dt = A \int_0^\infty \exp(-\frac{t}{\tau}) dt$$
$$C_{fin} = A \int_0^\infty \exp(-\frac{t}{\tau}) dt = A(-\tau) \left[\exp(-\frac{t}{\tau}) \right]_0^\infty = A \tau \qquad (2)$$

On the other hand, number of citations C_0 at time t_0 is

$$C_{0} = A \int_{0}^{t_{0}} \exp(-\frac{t}{\tau}) dt = A(-\tau) \left[\exp(-\frac{t}{\tau}) \right]_{0}^{t_{0}} = A(-\tau) \left(\exp(-\frac{t_{0}}{\tau}) - 1 \right)$$
$$= C_{fin} \left(1 - \exp(-\frac{t_{0}}{\tau}) \right)$$

Hence, $C_{fin} = \frac{C_0}{1 - \exp(-\frac{t_0}{\tau})}$ (3)

By using equation (3), C_{fin} can be calculated from C_0 and t_0 assuming the decay time τ .

Here, half-life time τ_{half} is related to τ as

$$\exp(-\frac{\tau_{half}}{\tau}) = \frac{1}{2} \text{ or } -\frac{\tau_{half}}{\tau} = \log\left(\frac{1}{2}\right)$$

Hence, $\tau = -\frac{\tau_{half}}{\log(0.5)} \approx 1.44\tau_{half}$

Half-life time listed in Journal Citation Report typically varies from 4 to 10 years depending on a journal. Since most of traditional journals has this half-life time τ_{half} about 7, let's assume τ as 10 years.

Then, equation (3) becomes
$$C_{fin} = \frac{C_0}{1 - \exp\left(-\frac{t_0 [month]}{120[month]}\right)}$$