

Dewetting

Structural deformation

In situ observation of dewetting-induced deformation of vertically aligned single-walled carbon nanotubes

Yuta Yoshimoto^a, Koichi Isomura^a, Sou Sugiyama^a, Hua An^a, Takuma Hori^b, Taiki Inoue^a, Shohei Chiashi^a, Shu Takagi^a, Shigeo Maruyama^{a, c, *}, Ikuya Kinefuchi^{a, *}

^a Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,

Tokyo 113-8656, Japan

^b Department of Mechanical Engineering, Tokyo University of Science, 2641 Yamazaki, Noda,

Chiba 278-8510, Japan

^c Energy NanoEngineering Laboratory, National Institute of Advanced Industrial Science and

Technology (AIST), 1-2-1 Namiki, Tsukuba 305-8564, Japan

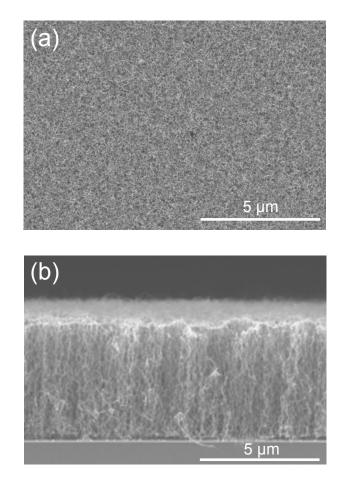
^{*} Corresponding authors. *E-mail addresses*: <u>maruyama@photon.t.u-tokyo.ac.jp</u> (S. Maruyama), <u>kine@fel.t.u-tokyo.ac.jp</u> (I. Kinefuchi).

ABSTRACT

We investigated dynamical processes of capillary-mediated deformation of vertically aligned single-walled carbon nanotubes (VA-SWCNTs) via in situ observation of their wetting and dewetting behaviors using an environmental scanning electron microscope (ESEM). Three types of wetting behaviors on a VA-SWCNT sample were confirmed, including conical shaped water aggregates, spherical droplets on tips of conical shaped water aggregates, and extensively distributed water layers. While the former two types both resulted in dimples on the VA-SWCNT surface and failed to induce large-scale deformation of VA-SWCNTs, the latter caused the formation of wall-like structures and crack propagation in the VA-SWCNT film during the dewetting process due to directional retraction of vapor-liquid interfaces. This dewetting-induced large-scale deformation that was confirmed by the in situ ESEM observation for the first time represented initial stages of capillary processes, leading to the self-organization of VA-SWCNTs reported in recent literatures. Compared to the previous studies based on ex situ observations of dried samples, our *in situ* observation successfully captured temporal evolution of the dewettinginduced deformation, facilitating the more precise construction of predictive models of final morphologies of VA-SWCNT films after capillary-mediated densification.

113	
114	
115	
116	Keywords: Single-walled carbon nanotubes; Dewetting; In situ observation; Environmental
117	
118	scanning electron microscope
119	
120	
120	
121	
123	
124	
125	
126	
127	
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	
140	
141	
142	
142	
144	
145	
146	
147	
148	
149	
150	
151	
152	
153	
154	
155	
156	
157	
158	
159	
160	
161	
162	
163	
164	
165	2
166	3
167	
168	

1. Introduction

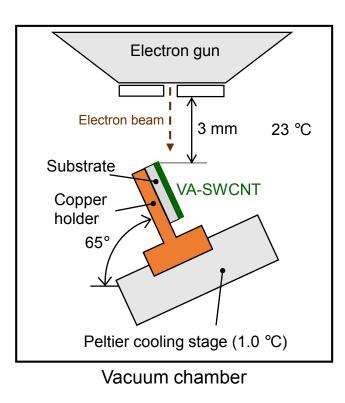

Carbon nanotubes (CNTs) [1,2] possess excellent electrical [3], optical [4], mechanical [5], and thermal properties [6]. CNTs, thus, have been widely studied for various applications. In addition to nanostructures of an individual CNT, there is a need to control macroscale morphologies of CNT ensembles, which depends on intended applications. For instance, horizontally aligned CNTs [7] are suitable for field-effect transistors [8], while vertically aligned (VA-) CNTs [9,10] are efficiently used for thermal interface materials [11]. The morphology of VA-CNTs can be further adjusted via post-growth processing. Capillary-mediated selforganization of VA-CNTs [12,13] is one of the attractive approaches in terms of its scalability and low-cost. Such a simple liquid-induced process has realized various CNT morphologies by tuning original VA-CNTs and treatment methods, such as honeycomb-like networks [12,13], tepee structures [14], densified arrays [15], and more complex architectures [15,16]. These shape-engineered CNTs have demonstrated their superior performance as cell seeding scaffolds [17], field-emitters [18], super-capacitors [15], sliding electrical contacts [19], and CNT-Si heterojunction solar cells [20].

In general, when nanopillars such as VA-CNTs are immersed in water and pierce the vaporliquid interface, capillary force causes nanopillars to bend and buckle [21–26], resulting in their collapse or clustering [27]. Some studies have proposed predictive models for the final morphology of VA-CNTs after capillary-mediated densification [27,28]. However, most studies to date have been based on *ex situ* observations of the dried structures [12,16,19,29], paying much less attention to dynamical processes of VA-CNT deformation during wetting and dewetting. The elucidation of these dynamical processes can contribute to constructing more precise models that enable the prediction of the final morphology according to experimental conditions; therefore, allowing the opportunity to tailor morphologies for certain purpose. However, it is still a challenge to observe microscale dynamical processes of the VA-CNT deformation using an optical microscope via conventional direct immersion of VA-CNTs in water [12,30] or exposure of VA-CNTs to vapor [16,19,29]. Therefore, the present study aims to capture the dynamical processes of the capillary-mediated deformation of vertically aligned single-walled carbon nanotubes (VA-SWCNTs) by in situ observation of their wetting and dewetting behaviors using an environmental scanning electron microscope (ESEM). The formation of wall-like structures and crack propagation in a VA-SWCNT film during the dewetting process of water were confirmed, which supports the initial stage of capillarymediated modifications of VA-SWCNT morphologies.

2. Materials and methods

2.1. Vertically aligned single-walled carbon nanotubes (VA-SWCNTs)

VA-SWCNTs were synthesized on a Co/Mo dip-coated Si/SiO₂ substrate using the alcohol catalytic chemical vapor deposition process [10,31], as shown in Fig. 1. The high *G/D* ratio obtained by the Raman spectroscopy (see Supplementary material S1) ensured the high quality of the VA-SWCNTs. The average diameter of the VA-SWCNTs and the film thickness were about 2 nm and 5 μ m, respectively. The number density of the VA-SWCNTs was ~ 10¹² cm⁻², leading to the porosity of ~ 97% [32]. The VA-SWCNT film had a disordered and dense crust layer on the top region [33].


Fig. 1. Scanning electron microscope (SEM) images of the VA-SWCNT film from a top view (a) and a side view (b).

2.2. Experimental identification of water-induced deformation of VA-SWCNTs

It was reported that the exposure of VA-CNTs to vapor results in self-assembled microhoneycomb networks [20], although its microscale dynamical processes are yet to be understood (see Supplementary material S2). In the present study, we employed an

environmental scanning electron microscope (ESEM, FEI Quanta 250) for the in situ observation of water-induced deformation of VA-SWCNTs, as illustrated in Fig. 2. The sample was mounted on a copper holder in contact with a Peltier cooling stage at 1.0 °C. The sample was tilted by 65° with respect to the horizontal direction to observe the water distribution and shapes of water aggregates on the sample. The ambient temperature inside the vacuum chamber, except in the vicinity of the sample, was about 23 °C (i.e., room temperature). The working distance was 3 mm. The acceleration voltage and the probe current were 20 kV and 0.28 nA, respectively. The pressure of water vapor was initially kept at $P \approx 680$ Pa and elevated to $P \approx 760$ Pa to initiate the vapor condensation. Subsequently, the vapor pressure was reduced to $P \approx 680$ Pa to induce the water evaporation. This pressure range roughly originated from the saturation vapor pressure (657 Pa) at 1 °C [34], although a larger pressure was actually required to trigger vapor condensation on the VA-SWCNT film because the film temperature was higher than that of the Peltier cooling stage.

Note that before measurements, almost all gases in the chamber were purged by water vapor through purge-flood cycles, ensuring that the fraction of non-condensable gases was lower than 1%. Then, the water vapor pressure inside the chamber was controlled via the microscope's feedback control system.

Fig. 2. A schematic presentation of the ESEM measurement system. The sample was mounted on a copper holder in contact with a cooling stage at 1.0 °C via a Peltier cooling system. The sample was tilted by 65° with respect to the horizontal direction. The ambient temperature inside the chamber was about 23 °C. Dimensions are not to scale.

After the *in situ* observation of the VA-SWCNT deformation induced by water vapor condensation and evaporation, a scanning electron microscope (SEM) (Hitachi High-Tech, S-4800) was also employed to complement the observation.

3. Results and discussion

Figure 3 shows water aggregates condensing on the sample at the vapor pressure of $P \approx 760$ Pa in the ESEM chamber. Water aggregates under the crust laver were visible because the VA-SWCNT film was transparent, owing to its high porosity ($\sim 97\%$) which allowed the electron beam (secondary electrons) to enter inside (escape from) the film. The bottom left region bounded by the green dashed-dotted line was initially exposed to electron beams for observation, followed by the change of view. Clearly, there was negligible condensed water in the initial observation area due to electron beam heating effects [35,36]. Meanwhile, an evident amount of water aggregates were found at the boundary of the initial observation area swept by the electron beam. In addition, a number of small water aggregates were observed out of the initial observation area. Three types of wetting behaviors on the VA-SWCNT sample were confirmed, including (I) conical shaped water aggregates, (II) spherical droplets on the tips of conical shaped water aggregates, and (III) extensively distributed water layers. While the water aggregates of types (I) and (II) were mainly observed out of the initial observation area, the water layers were only observed along the edge of that area. We infer that this intriguing phenomenon originates from the balance between suppression and enhancement effects of vapor condensation by electron beams. While heating effects due to electron beams [35,36] suppressed

vapor condensation, positively charged water molecules (H₂O⁺) in the ESEM chamber interacted with negatively charged surfaces [37] and became H₂O, enhancing the nucleation of liquid water. Specifically, the boundary of the initial observation area was exposed to more electron beams because of the turnarounds of the electron beam sweep. Vapor condensation, thus, was enhanced and overwhelmed the evaporation due to heating effects. This allowed for the formation of extensively distributed water layers (III) in the ESEM environment. For the water aggregates of type (I), the nucleation was considered to occur at the interface between the substrate and VA-SWCNTs (Fig. 2), where the temperature was lower than that at the tips of VA-SWCNTs. The condensation growth subsequently proceeded upwards until the crust region was reached, which suppressed further growth in the height direction. The type (II) may originate from type (I), i.e., water aggregates of type (I) turned to be type (II) after penetrating through the crust region. As we discuss below, the extensively distributed water layers (III) mainly contributed to the formation of wall-like structures and crack propagation.

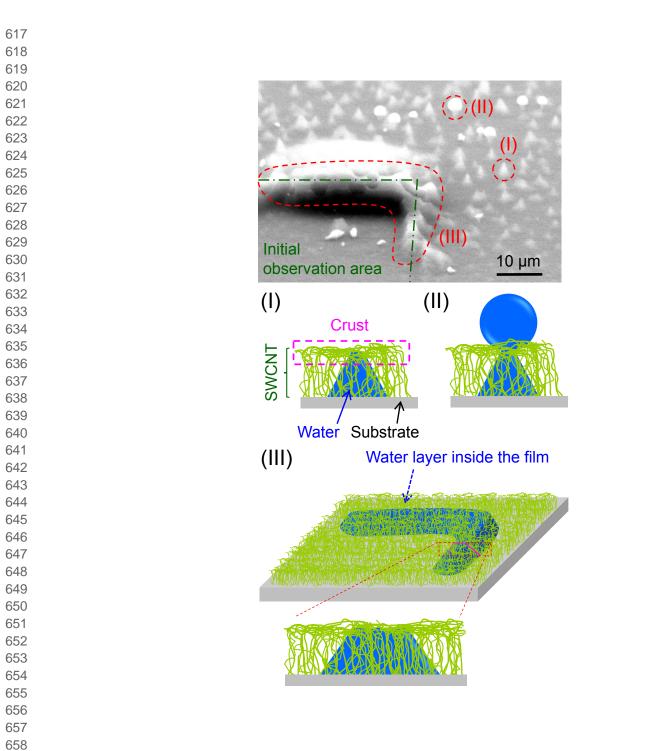
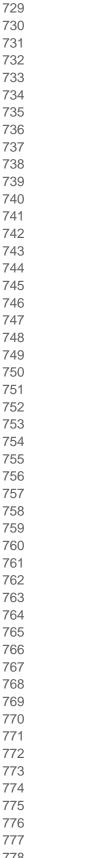
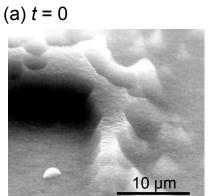




Fig. 3. Wetting behaviors of VA-SWCNTs observed in the ESEM chamber having the vapor pressure of $P \approx 760$ Pa. Water aggregates under the crust layer were visible because of high porosity of the VA-SWCNT film. Three types of wetting behaviors were exhibited, i.e., (I)

conical shaped water aggregates, (II) spherical droplets on the tips of conical shaped water aggregates, and (III) extensively distributed water layers inside the VA-SWCNT forest. The bottom left area bounded by the green dashed-dotted line was initially exposed to electron beams for observation.

Figure 4 shows the type (III) wetting behavior of VA-SWCNTs during vapor condensation observed in the ESEM chamber. VA-SWCNTs became evidently wet for the pressure of $P \approx 760$ Pa, exhibiting extensively distributed water layers as discussed above. We note that there was no evident structural deformation of the VA-SWCNTs during the wetting process for more than 5 min. In contrast, structural deformation of the VA-SWCNTs was clearly confirmed during the dewetting process, as shown in Fig. 5. By decreasing the pressure to $P \approx 680$ Pa, a dimple appeared in wet SWCNTs as shown in Fig. 5(a). Subsequently, vapor-liquid interfaces retracted from the dimple along the edges of the initial observation area (Fig. 3) as indicated by the dashed arrows in Figs. 5(b)–(f), generating structural deformations of SWCNTs along these directions. This directional retraction of the vapor-liquid interfaces played a key role in the large-scale structural deformation of VA-SWCNTs.

(b) *t* = 324 s

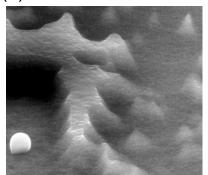
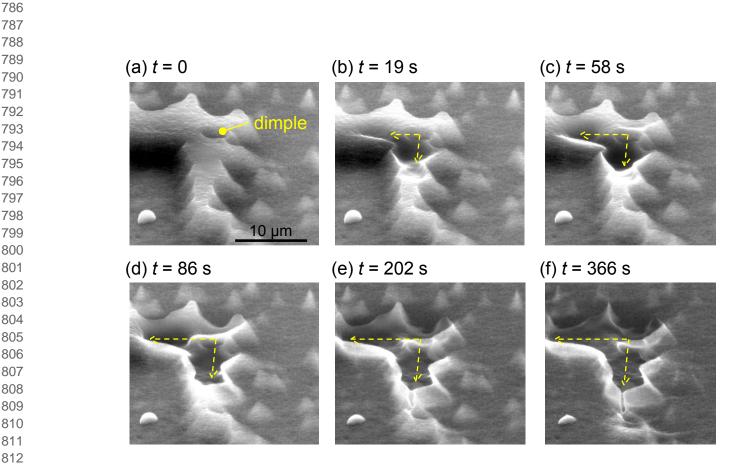



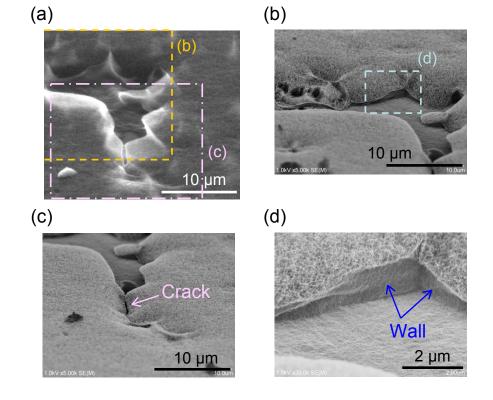
Fig. 4. The type (III) wetting behavior of the VA-SWCNTs during vapor condensation observed

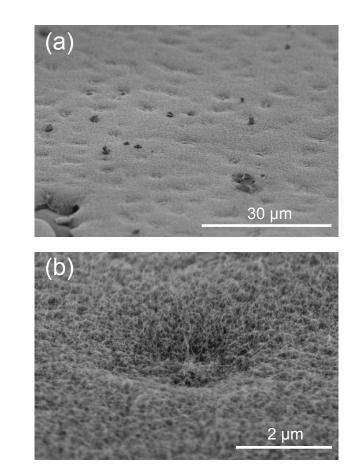
in the ESEM chamber having the vapor pressure of $P \approx 760$ Pa; (a) t = 0 s, (b) t = 324 s.

Fig. 5. Time evolution of dewetting-induced deformation of the VA-SWCNTs during evaporation of an extensively distributed water layer (the type (III) in Fig. 3) observed in the ESEM chamber having the vapor pressure of $P \approx 680$ Pa; (a) t = 0 s, (b) t = 19 s, (c) t = 58 s, (d) t = 86 s, (e) t = 202 s, (f) t = 366 s. The dashed arrows in (b)–(f) represent the directions of

structural deformations.

To investigate the dewetting-induced deformation of the VA-SWCNTs in detail, Fig. 6 compares the *in situ* ESEM image with the subsequent SEM images after the exposure to vapor. As shown in Fig. 6(b), collapsed SWCNTs were clearly observed. In addition, crack and wall-like structures were also confirmed in Figs. 6(c) and (d). Again, extensively distributed water layers (III) played an important role to induce large-scale deformation of the SWCNTs, resulting in the collapse, crack propagation, and formation of wall-like structures.




Fig. 6. Specification of dewetting-induced deformation of SWCNTs by comparing the in situ

ESEM image (a) with the subsequent SEM images after the exposure to vapor (b–d). The SEM observation angle was 65° in accordance with the ESEM observation. (a) ESEM image identical to Fig. 5(f). (b) SEM image corresponding to the region denoted by the dashed line in (a); (c) SEM image of the crack corresponding to the region denoted by the dashed-dotted line in (a); (d) SEM image of the wall-like structure corresponding to the region denoted by the dashed line in (a); (b).

Figure 7 shows the SEM images of the SWCNTs where the water aggregates of types (I) and (II) were present. While a number of dimples were present on the SWCNT surface, large-scale structural deformation of the SWCNTs was not confirmed, which is different from the area where the water layers (III) were extensively distributed. Basically, VA-SWCNTs that pierce a vapor-liquid interface are subject to a compressive force along the thickness and hence likely to buckle [27,38]. More specifically, for a circular rod clamped on a substrate, the critical buckling length is given by

$$L_{\rm c} = \frac{\pi}{2} \sqrt{\frac{EI}{F_{\rm cap}}} \tag{1}$$

where $E \sim 1$ TPa is Young's modulus of a single SWCNT [39], $I = \pi r^4/4$ is inertia moment with SWCNT radius of $r \sim 2$ nm, $F_{cap} = 2\pi r \cos\theta$ is capillary force with surface tension of $\gamma \approx 72$ mN/m and contact angle of $\theta \approx 86^{\circ}$ corresponding to a water droplet on a graphite surface [40]. Equation 1 yielded $L_c \approx 0.7 \ \mu m < H \approx 5 \ \mu m$ with H being the SWCNT length. The possibility of the SWCNT buckling, thus, was indicated. However, entanglements and crust regions together with the small amount of water prevented complete collapse of SWCNTs in the present conditions. In addition, no clear difference in the deformed structures was observed between the spots where the water aggregates of types (I) and (II) were present. Namely, both of type (I) and (II) water aggregates just yielded dimples and failed to induce large-scale deformation of the VA-SWCNTs in contrast to type (III). Directional retraction of vapor-liquid interfaces of spatially distributed water layers (Fig. 5) played a crucial role for the large-scale deformation of VA-SWCNTs, leading to crack propagation and formation of wall-like structures. Although the extensively distributed water layers observed in the present study stemmed from the vapor condensation enhancement due to electron beams, we expect that the directional retraction of their vapor-liquid interfaces could be a main factor of spatially distributed deformation of VA-SWCNTs in actual capillary process.

Fig. 7. SEM images of the SWCNTs where the water aggregates of types (I) and (II) were present in Fig. 3. The SEM observation angle was 65° in accordance with the ESEM observation (Fig. 2). (a) Dimples distributed on the SWCNT surface. (b) Enlarged view of a representative dimple.

Finally, self-assembled microhoneycomb networks reported by Cui et al. [20] were not observed in the present study. We note that the water vapor treatment [20] consisted of repetitive

two steps, i.e., (1) exposing a VA-SWCNT array to vapor from a hot water reservoir and (2) turning the sample over and drying the array in an ambient environment (see Supplementary material S2), which is considerably different from our experimental condition.

4. Conclusions

We investigated dynamical processes of capillary-mediated deformation of vertically aligned single-walled carbon nanotubes (VA-SWCNTs) by in situ observation of their wetting and dewetting behaviors using an environmental scanning electron microscope (ESEM). We confirmed the formation of wall-like structures and crack propagation in the VA-SWCNT film during the dewetting process of water, which were caused by extensively distributed water layers that resulted in directional retraction of vapor-liquid interfaces. Such dewetting-induced largescale deformation that was for the first time captured by the *in situ* ESEM observation represented initial stages of capillary processes, leading to capillary-mediated self-organization of VA-SWCNTs. Our findings can help to more precisely construct the predictive models of final morphologies of VA-SWCNT films after capillary-mediated densification. Finally, it will be interesting to use SWCNT films with microscale patterns fabricated via a lithography process [38]. The pre-patterned surfaces would allow us to control the directions of SWCNT

1121		
1122		
1123		
1124	defo	rmation, enabling more systematic <i>in situ</i> observation of the dewetting-induced deformation
1125		
1126		
1127	using	g an ESEM.
1128		
1129		
1130		
1131		
1132		
1133	Ackı	nowledgments
1134		5
1135		
1136	This	work was partly supported by JSPS KAKENHI Grant Numbers JP15H05760 and
1137		
1138		
1139	JP18	BH05329.
1140		
1141		
1142		
1142		
1144	App	endix A. Supplementary data
1145		
1146		
1147	Supp	plementary data to this article can be found online at ***.
1148	11	•
1149		
1150		
1151		
1152		
1153	Refe	erences
1154		
1155		
1156	[1]	S. Iijima, Helical microtubules of graphitic carbon, Nature. 354 (1991) 56–58.
1157		
1158		
1159		doi:10.1038/354056a0.
1160		
1161		
1162	[2]	S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature. 363
1163		
1164		
1165		(1993) 603–605. doi:10.1038/363603a0.
1166		
1167	503	
1168	[3]	Z. Yao, C.L. Kane, C. Dekker, High-Field Electrical Transport in Single-Wall Carbon
1169		
1170		
1171		Nanotubes, Phys. Rev. Lett. 84 (2000) 2941–2944. doi:10.1103/PhysRevLett.84.2941.
1172		
1173		21
1174		21
1175		
1110		

1178 1179 1180	[4]	M.J. O'Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L.
1181 1182	[4]	M.J. O Connen, S.W. Daenno, C.D. Hurman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L.
1183 1184 1185		Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E.
1186 1187		Smalley, Band gap fluorescence from individual single-walled carbon nanotubes, Science.
1188 1189 1190		297 (2002) 593-596. doi:10.1126/science.1072631.
1191 1192 1193	[5]	MF. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking
1194 1195 1196		mechanism of multiwalled carbon nanotubes under tensile load, Science. 287 (2000) 637-
1197 1198 1199		640. doi:10.1126/SCIENCE.287.5453.637.
1200 1201 1202	[6]	P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Thermal Transport Measurements of
1203 1204		Individual Multiwalled Nanotubes, Phys. Rev. Lett. 87 (2001) 215502.
1205 1206 1207		doi:10.1103/PhysRevLett.87.215502.
1208 1209 1210	[7]	C. Kocabas, SH. Hur, A. Gaur, M.A. Meitl, M. Shim, J.A. Rogers, Guided Growth of
1211 1212 1213		Large-Scale, Horizontally Aligned Arrays of Single-Walled Carbon Nanotubes and Their
1214 1215 1216		Use in Thin-Film Transistors, Small. 1 (2005) 1110–1116. doi:10.1002/smll.200500120.
1217 1218 1219	[8]	S.J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M.A. Alam, S. V. Rotkin, J.A.
1220 1221 1222		Rogers, High-performance electronics using dense, perfectly aligned arrays of single-
1223 1224		walled carbon nanotubes, Nat. Nanotechnol. 2 (2007) 230-236.
1225 1226 1227		doi:10.1038/nnano.2007.77.
1228 1229 1230		22
1231 1232		

1234		
1235 1236		
1230	[9]	W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang,
1238		
1239		Large-Scale Synthesis of Aligned Carbon Nanotubes, Science. 274 (1996) 1701–1703.
1240		Large-Seale Synthesis of Anglied Carbon Wanotubes, Science. 274 (1990) 1701–1705.
1241		
1242		doi:10.1126/SCIENCE.274.5293.1701.
1243		
1244 1245	[10]	V. Murrehami, S. Chiashi, V. Miyayahi, M. Hu, M. Osura, T. Olayha, S. Marryama
1245	[10]	Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo, S. Maruyama,
1240		
1248		Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and
1249		
1250		
1251		their optical anisotropy, Chem. Phys. Lett. 385 (2004) 298-303.
1252		
1253		doi:10.1016/J.CPLETT.2003.12.095.
1254 1255		
1255		
1257	[11]	J. Xu, T.S. Fisher, Enhanced thermal contact conductance using carbon nanotube array
1258		
1259		interfaces, IEEE Trans. Components Packag. Technol. 29 (2006) 261–267.
1260		interfaces, iEEE Trails. Components Lackag. Teemion. 27 (2000) 201–207.
1261		
1262		doi:10.1109/TCAPT.2006.875876.
1263 1264		
1265	[12]	H. Liu, S. Li, J. Zhai, H. Li, Q. Zheng, L. Jiang, D. Zhu, Self-Assembly of Large-Scale
1266		11. Elu, S. El, J. Zhai, 11. El, Q. Zheng, E. Jiang, D. Zhu, Sen-Assembly of Large-Searc
1267		
1268		Micropatterns on Aligned Carbon Nanotube Films, Angew. Chemie Int. Ed. 43 (2004)
1269		
1270		1146 1140 doi:10.1002/arris 200251088
1271		1146–1149. doi:10.1002/anie.200351988.
1272 1273		
1273	[13]	N. Chakrapani, B. Wei, A. Carrillo, P.M. Ajayan, R.S. Kane, Capillarity-driven assembly
1275		
1276		
1277		of two-dimensional cellular carbon nanotube foams, Proc. Natl. Acad. Sci. U. S. A. 101
1278		
1279		(2004) 4009–4012. doi:10.1073/pnas.0400734101.
1280		(\cdots)
1281 1282		
1283	[14]	K.K.S. Lau, J. Bico, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G.H.
1284		
1285		23
1286		
1287		
1288		

1289		
1290 1291		
1292		
1293		McKinley, K.K. Gleason, Superhydrophobic Carbon Nanotube Forests, Nano Lett. 3
1294		
1295		(2003) 1701–1705. doi:10.1021/NL034704T.
1296		
1297		
1298 1299	[15]	D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H.
1300		
1301		Hatori, M. Yumura, S. Iijima, Shape-engineerable and highly densely packed single-
1302		Traton, M. Tamara, S. Ijina, Shape engineeraole and inging densery paened single
1303		
1304		walled carbon nanotubes and their application as super-capacitor electrodes, Nat. Mater. 5
1305		
1306		(2006) 987–994. doi:10.1038/nmat1782.
1307		(2000) 987–994. doi:10.1038/iiiidt1782.
1308 1309		
1310	[16]	M. De Volder, S.H. Tawfick, S.J. Park, D. Copic, Z. Zhao, W. Lu, A.J. Hart, Diverse 3D
1311		
1312		
1313		Microarchitectures Made by Capillary Forming of Carbon Nanotubes, Adv. Mater. 22
1314		
1315		(2010) 4384–4389. doi:10.1002/adma.201001893.
1316		
1317 1318	F 1 6 1	
1319	[17]	M.A. Correa-Duarte, N. Wagner, J. Rojas-Chapana, C. Morsczeck, M. Thie, M. Giersig,
1320		
1321		Fabrication and Biocompatibility of Carbon Nanotube-Based 3D Networks as Scaffolds
1322		
1323		
1324		for Cell Seeding and Growth, Nano Lett. 4 (2004) 2233–2236. doi:10.1021/NL048574F.
1325 1326		
1327	[18]	L.M. Sheng, M. Liu, P. Liu, Y. Wei, L. Liu, S.S. Fan, Field emission from self-assembly
1328		
1329		
1330		structure of carbon-nanotube films, Appl. Surf. Sci. 250 (2005) 9–13.
1331		
1332		doi:10.1016/J.APSUSC.2004.12.036.
1333 1334		doi.10.1010/0.1110000.2001.12.000.
1335		
1336	[19]	D.N. Futaba, K. Miyake, K. Murata, Y. Hayamizu, T. Yamada, S. Sasaki, M. Yumura, K.
1337		
1338		Hata, Dual Porosity Single-Walled Carbon Nanotube Material, Nano Lett. 9 (2009) 3302-
1339		Thun, Duar Forosity Single- wanted Caroon Manolube Material, Mano Lett. 7 (2007) 5502-
1340		
1341		24
1342 1343		
1343		

1015
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1370
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399

3307. doi:10.1021/nl901581t.

51 52	[20]	K. Cui, T. Chiba, S. Omiya, T. Thurakitseree, P. Zhao, S. Fujii, H. Kataura, E. Einarsson,
52 53 54 55 56		S. Chiashi, S. Maruyama, Self-Assembled Microhoneycomb Network of Single-Walled
56 57 58 59		Carbon Nanotubes for Solar Cells, J. Phys. Chem. Lett. 4 (2013) 2571–2576.
59 50 51		doi:10.1021/jz401242a.
50 51 52 53 54	[21]	D. Chandra, S. Yang, Capillary-Force-Induced Clustering of Micropillar Arrays: Is It
65 66 67		Caused by Isolated Capillary Bridges or by the Lateral Capillary Meniscus Interaction
58 59 70		Force?, Langmuir. 25 (2009) 10430-10434. doi:10.1021/la901722g.
71 72 73	[22]	CC. Chang, Z. Wang, YJ. Sheng, HK. Tsao, Nanostructure collapse by elasto-
'4 '5		capillary instability, Soft Matter. 10 (2014) 8542-8547. doi:10.1039/C4SM01520G.
76 77 78	[23]	P.A. Kralchevsky, V.N. Paunov, I.B. Ivanov, K. Nagayama, Capillary meniscus
79 80 81		interaction between colloidal particles attached to a liquid-fluid interface, J. Colloid
32 33 34		Interface Sci. 151 (1992) 79–94. doi:10.1016/0021-9797(92)90239-I.
85 86 87	[24]	C. Py, R. Bastien, J. Bico, B. Roman, A. Boudaoud, 3D aggregation of wet fibers,
88 99 10		Europhys. Lett. 77 (2007) 44005. doi:10.1209/0295-5075/77/44005.
)1)2)3	[25]	D. Chandra, S. Yang, Stability of High-Aspect-Ratio Micropillar Arrays against Adhesive
)4)5		and Capillary Forces, Acc. Chem. Res. 43 (2010) 1080–1091. doi:10.1021/ar100001a.
96 97 98		25
0		

1401 1402		
1403		
1404	[26]	B. Roman, J. Bico, Elasto-capillarity: deforming an elastic structure with a liquid droplet,
1405	[20]	D. Roman, J. Dieo, Elasto-capinanty: deforming an elastic structure with a riquid dropiet,
1406		
1407		J. Phys. Condens. Matter. 22 (2010) 493101. doi:10.1088/0953-8984/22/49/493101.
1408 1409		
1409	[27]	E Chiedi D Domon I Diego Diaroing on interface with a bruch Collaborative stiffening
1411	[27]	F. Chiodi, B. Roman, J. Bico, Piercing an interface with a brush: Collaborative stiffening,
1412		
1413		EPL. 90 (2010) 44006. doi:10.1209/0295-5075/90/44006.
1414		
1415	FO 01	
1416	[28]	A.L. Kaiser, I.Y. Stein, K. Cui, B.L. Wardle, Process-morphology scaling relations
1417 1418		
1410		quantify self-organization in capillary densified nanofiber arrays, Phys. Chem. Chem.
1420		
1421		
1422		Phys. 20 (2018) 3876–3881. doi:10.1039/C7CP06869G.
1423		
1424	[29]	M.F.L. De Volder, S.J. Park, S.H. Tawfick, D.O. Vidaud, A.J. Hart, Fabrication and
1425	[=>]	hin .D. De Volder, S.S. Fulk, S.H. Fulliek, D.O. Vlauda, H.S. Hurt, Fullient und
1426		
1427 1428		electrical integration of robust carbon nanotube micropillars by self-directed
1429		
1430		elastocapillary densification, J. Micromechanics Microengineering. 21 (2011) 045033.
1431		clastocaphiary defisitication, J. Wheromeenames wheroengineering. 21 (2011) 045055.
1432		
1433		doi:10.1088/0960-1317/21/4/045033.
1434		
1435	[20]	C.T. Wirth, S. Hofmann, J. Robertson, Surface properties of vertically aligned carbon
1436 1437	[30]	C.1. with, S. Holmann, J. Robertson, Surface properties of vertically anglied carbon
1438		
1439		nanotube arrays, Diam. Relat. Mater. 17 (2008) 1518–1524.
1440		
1441		
1442		doi:10.1016/j.diamond.2007.11.019.
1443		
1444	[31]	S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, Low-temperature synthesis
1445 1446	Γ-]	
1447		
1448		of high-purity single-walled carbon nanotubes from alcohol, Chem. Phys. Lett. 360 (2002)
1449		
1450		229–234. doi:10.1016/S0009-2614(02)00838-2.
1451		
1452		
1453 1454		26
1454		
1456		

1458		
1459		
1460	[32]	R. Xiang, Z. Yang, Q. Zhang, G. Luo, W. Qian, F. Wei, M. Kadowaki, E. Einarsson, S.
1461		
1462		
1463 1464		Maruyama, Growth Deceleration of Vertically Aligned Carbon Nanotube Arrays:
1465		
1466		Catalyst Deactivation or Feedstock Diffusion Controlled?, J. Phys. Chem. C. 112 (2008)
1467		Catalyst Deactivation of Tecustock Diffusion Controlled?, J. Thys. Chem. C. 112 (2006)
1468		
1469		4892–4896. doi:10.1021/JP710730X.
1470		
1471	[22]	
1472	[33]	Y. Won, Y. Gao, M.A. Panzer, R. Xiang, S. Maruyama, T.W. Kenny, W. Cai, K.E.
1473		
1474 1475		Goodson, Zipping, entanglement, and the elastic modulus of aligned single-walled carbon
1476		
1477		
1478		nanotube films, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 20426–20430.
1479		
1480		d_{0} :10 1072/mmg 1212252110
1481		doi:10.1073/pnas.1312253110.
1482		
1483	[34]	D.R. Lide, CRC Handbook of Chemistry and Physics, 85th ed., CRC Press, Boca Raton,
1484		
1485 1486		
1487		Florida, 2004.
1488		
1489	[35]	R.E. Cameron, A.M. Donald, Minimizing sample evaporation in the environmental
1490	[]	
1491		
1492		scanning electron microscope, J. Microsc. 173 (1994) 227-237. doi:10.1111/j.1365-
1493		
1494		2818.1994.tb03445.x.
1495 1496		2010.1774.t005445.X.
1497		
1498	[36]	K. Rykaczewski, J.H.J. Scott, A.G. Fedorov, Electron beam heating effects during
1499		
1500		
1501		environmental scanning electron microscopy imaging of water condensation on
1502		
1503		superhydrophobic surfaces, Appl. Phys. Lett. 98 (2011) 093106. doi:10.1063/1.3560443.
1504		
1505 1506		
1506 1507	[37]	G.D. Danilatos, Foundations of Environmental Scanning Electron Microscopy, Adv.
1507		
1509		27
1510		27
1511		
1512		

1513 1514		
1515 1516 1517 1518		Electron. Electron Phys. 71 (1988) 109–250. doi:10.1016/S0065-2539(08)60902-6.
1519 1520	[38]	S.H. Tawfick, J. Bico, S. Barcelo, Three-dimensional lithography by elasto-capillary
1521 1522 1523		engineering of filamentary materials, MRS Bull. 41 (2016) 108-114.
1524 1525 1526		doi:10.1557/mrs.2016.4.
1527 1528 1529	[39]	A. Sears, R.C. Batra, Macroscopic properties of carbon nanotubes from molecular-
1530 1531 1532		mechanics simulations, Phys. Rev. B. 69 (2004) 235406.
1533 1534		doi:10.1103/PhysRevB.69.235406.
1535 1536 1537	[40]	A.W. Adamson, A.P. Gast, Physical Chemistry of Surfaces, 6th ed., Wiley, New York,
1538 1539 1540		1997.
1541 1542		
1543		
1544 1545		
1546		
1547		
1548 1549		
1550		
1551		
1552		
1553 1554		
1555		
1556		
1557 1558		
1559		
1560		
1561		
1562 1563		
1564		
1565		28
1566		
1567 1568		