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Abstract 

Knowledge of thermal conductance of carbon nanotubes under mechanical deformation is 

important to characterize the robustness of carbon nanotube heat conduction. In this study, using 

molecular dynamic simulations, we have calculated thermal conductance of an elastically buckled 

single-walled carbon nanotube. A local buckle was formed by mechanically bending a carbon 

nanotube at an angle of 60°, and thermal conductance through the buckle was calculated by a 

nonequilibrium molecular dynamics approach. The thermal conductance exhibits strong diameter 

dependence, correlated with the strain energy generated in the buckle. Despite the highly stained 

deformation, the thermal resistance across a buckle is similar to that of a point defect and heterotube 

junction, revealing a robust nature of carbon nanotube heat conduction to buckling deformation. 
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1. Introduction 

Over the last two decades, single-walled carbon nanotubes (SWNTs) have been celebrated for 

their unique properties due to their quasi-one-dimensional structure [1]. One of the properties that 

can greatly benefit from such a structure is lattice thermal conductivity. The covalently bonded 

graphitic structure gives rise to high phonon group velocities, and highly discretized azimuthal 

wavevectors limit phonon scattering channels. In addition, in an ideal setup (e.g. free standing), the 

edgeless structure prohibits surface phonon scattering. In such an ideal environment, SWNTs have 

been shown to exhibit extremely high thermal conductivity (~3000 Wm-1K-1) [2, 3].  

While the reports of high thermal conductivity have motivated applications of carbon nanotubes 

as thermal interface materials [4-8] and additives in nanocomposites [9-12], in practice, one needs to 

consider various thermal resistances that manifest in the actual samples and environments. In this 

course, influence of impurities and defects on SWNT heat conduction has been widely explored 

[13-18]. More recently, reduction of thermal conductivity of carbon nanotube due to the contact with 

environment has been studied [19, 20]. Another source of thermal resistance is the mechanical 

deformation. It has been shown both in experiments and numerical simulations that the heat 

conduction of carbon nanotube is robust against bending deformation, leading researchers to suggest 

their use for phonon wave guide [21, 22]. However, the knowledge is limited to this date when it 

comes to how the mechanical deformation with higher strain energy, namely buckling, influences 

the heat conduction [23]. 

   Buckled CNTs are frequently found by transmission electron microscope (TEM) observations. 

Buckles are presumably caused by mechanical force that arises during sample preparation processes, 

such as transferring the sample onto TEM grids [24]. In addition, when growing SWNTs as a film, 

the friction between constituent SWNTs whose growth speed has a distribution is expected to cause 

mechanical forces that are sufficient to bend and even buckle the SWNTs. This should be 

particularly pronounced for vertically aligned SWNT (forest) films [25, 26], which has an attractive 

morphology for directional thermal transport applications, as all of the constituent SWNTs are 

required to grow at a similar speed to maintain the alignment.  

The energetics of the buckling deformation due to bending has been extensively studied by using 

molecular dynamics (MD)[24, 27-30], and continuum models for larger scale systems [28, 29]. 

Step-by-step bending simulations using molecular dynamics model has reproduced the buckling 

structure observed with TEM, and found that buckling transition is completely reversible (elastic) up 

to large angles (more than 110° [24]). The main focus of the reported works has been the critical 

curvature (κc) for buckling deformation, which was found to be proportional to the squared diameter 

(d2) [24, 27] and to have minute length dependence [28]. This implies that the physics of bending- 

induced buckling follows continuum elastic theory. One noticeable feature of the transition is that 

the release of strain energy due to the buckling formation is small, resulting in monotonous increase 



of strain energy with respect to the bending angle in the post buckling regime. At the same time, the 

stress is expected to concentrate in the buckled structure. These suggest that typical bending-induced 

buckles observed in the experiments to be under high local strain energy, which is a potential source 

of high thermal resistance. 

In this study, to understand the impact of buckling deformation on SWNT heat conduction, we 

have performed MD simulations of a buckled SWNT. Buckling deformation was formed by 

mechanically bending an SWNT in stepwise to angle of 60° (defined later). Thermal conductance 

through the buckle was then calculated by nonequilibrium MD method. Here, in order to isolate the 

effect of bending and buckling, we have constructed a system with a buckled structure held by 

quasi-straight SWNT leads. Correlation between the thermal conductance and the strain energy is 

investigated by performing the simulations for various SWNT diameters. 

 

2. Methodology 

We performed classical molecular dynamics (MD) simulations with the Tersoff-Brenner 

bond-order potential [31, 32] for carbon-carbon covalent bonds. In addition, the Lennard-Jones 12-6 

potential Vij=4ε[(σ/rij)
12-(σ/rij)

6]fc with parameters of ε=2.4 meV and σ=3.37 Å was adopted for the 

van der Waals interaction between (ith and jth) carbon atoms. The cutoff function was applied to the 

Lennard-Jones potential as 
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where r0ij is the equilibrium distance between ith and jth carbon atoms when the SWNT is straight, 

the d is the SWNT diameter, and b(=0.34 nm) is the van der Waals distance. The cutoff function 

limits the van der Waals interaction to serve mainly as a repulsive force between upper and lower 

wall when a buckled structure is formed. 

A buckling deformation was formed by bending a 202-unitcell-long (~50.1 nm) SWNT [Fig. 

1(a)]. The SWNT was bent by rotating the two rigid SWNT ends (85 unit cells on each end) around 

the origin in the opposite directions [Fig. 1(b)]. Here, the origin is the center of the initial unbent 

SWNT. The SWNT was bent by 1.010-5 degree per time step (2.010-5deg/fs) until the bending 

angle [Fig. 1(b)] reached 60°. The flexible part of the SWNT in the middle (32 unit cells, 8 nm long) 

was relaxed at every time step and formed a buckle when the local curvature exceeds the critical 

value [24]. During the bending, the distance between the end unit cell of the 8-nm-part and the origin 

was kept constant with the unit cell plane being orthogonal to the vector connecting the origin and 

the unit cell. This was followed by equilibration [Fig. 1(c)] and nonequilibrium MD simulations [Fig. 

1(d)], where only the end unit cells of the entire SWNT were fixed and the rest of the atoms in the 

SWNT were allowed to move. This way, we were able to obtain a system with a local buckle held in 

the middle by two quasi-straight parts. Among the armchair SWNTs tested: (10,10), (15,15), (20,20), 



and (25,25) SWNTs, the stable buckled structures were obtained for all the SWNTs except for the 

(25,25) SWNT, which was unstable due to the excess strain energy. 

The current bending method is different from the one commonly used to study the critical 

bending curvature [24, 28, 29], where the end unitcells are rotated and translated by keeping the 

curvature constant along the CNT (as in the beam deformation). The two methods should be similar 

for a small bending angle but be different for a larger one. The current bending method was adopted 

primarily because we were interested in the local thermal conductance at a buckle rather than the 

critical buckling angle. In the supercritical system (θ>θc), the bending stress on the SWNT is relaxed 

due to formation of a buckle, and the picture as shown in Fig. 2 is more like a buckled structure 

between two straight parts as often seen in the TEM observations [24]. By calculating the stress 

energy distribution after the buckle formation and relaxation, we have confirmed that the stress 

dominantly resides in the buckled part and is mostly confined within the length of 8 nm. In addition, 

the current setup is particularly appropriate for thermal conductance calculations since thermal 

conductance of a buckle is expected to be a function of local buckling angle rather than the overall 

effective bending curvature. This also allows us to decouple the effect of buckling from that of 

SWNT-lead bending. The bending is expected to have minor influence on the CNT thermal 

conductivity [22], but the decoupling is convenient for phonon modal analysis where the eigen states 

of leads do not change from that of the straight CNT, and thus any change we see in the lattice 

vibrational spectra should be due to the local buckling.  

After equilibrating the system at 300K, thermal conductance at the buckling deformation was 

calculated by non-equilibrium MD simulations. Temperature of both ends of SWNT colored by blue 

and red regions in Fig. 1(d) were maintained at TC=290K and TH=310 K, respectively, by using the 

Nose-Hoover thermostat to drive a steady thermal current Q through the SWNT. The length of the 

temperature-controlled regions was taken to be Lctrl=L/2, where L is the length of the phonon 

conduction channel. The relaxation time of the Nose-Hoover thermostat was set to be τ=40ps. These 

parameters Lctrl and τ were chosen to minimize the virtual thermal resistance between the channel 

and the thermostats [33]. The velocity Verlet algorithm was employed to integrate the classical 

Newton's equation of motion with the time step of 0.5 fs. The steady state thermal current was 

obtained by Q=<(QH-QC)/2>, where QH and QC are the thermal current into the hot and cold 

thermostat, respectively. Then the thermal conductance can be calculated as K=Q/(AΔT), where ΔT 

is the temperature difference between arbitral locations along in the z direction. Here, the 

cross-sectional area A of an SWNT is defined using a ring of van der Waals thickness πbd. 

 

3. Results and discussion 



Figure 3(a) shows the total strain energy (Es) as a function of bending angle of armchair SWNTs 

with different diameters. The total stain energy is calculated by summing the difference between the 

potential energy of αth atom in zth unit cell of bent (E) and that of straight SWNT (E0) SWNTs as,  
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where N is the number of carbon atoms. The kink in the profile denotes the buckling transition, 

which shows that SWNTs with smaller diameter require larger bending angle and strain energy to 

form a buckle. The critical curvature can be estimated from κc=θc/Lflex, where Lflex(=8 nm) is the 

length of the flexible part during the bending simulations. The obtained critical curvature and its 

diameter dependence agree well with those in the previous reports [28, 29] despite the above 

mentioned difference in the bending methods. In this work, thermal conductance of buckled 

structures was calculated for a bending angle of 60°, well-above θc, where the strain energy exhibits 

nonlinear dependence on the bending angle. 

While the above result shows that the total stain energy at certain bending angle is larger for 

larger SWNT diameter, the strain energy per atom is more appropriate measure to be correlated with 

thermal conductance per unit cross-sectional area A, where A is defined to be proportional to the 

number of atoms in the unit cell. Hence one needs to consider the strain energy distribution that is 

highly inhomogeneous, as shown in Fig. 3 (b) in terms of the strain energy per unit cell along SWNT 

axis,
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where n is the number of atoms per unit cell. As in Fig. 3 (c), the length of the strained region is 

better illustrated by plotting the cumulative strain energy, 
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where (z0=101) denotes the center unit cell of the 202-unit-cell-long SWNT. If we define the 

effective buckled region to be the region possessing 95 percent of the entire stress caused by bending 

and buckling, the number of unit cells in the buckle zb satisfies szz EE
b

95.0 . Then we obtain the 

averaged strain energy per atom Ês=Es/(nzb). As shown in Fig. 3(d), for a bending angle of 60°, Ês 

increases roughly linearly with decreasing SWNT diameter. 

Figure 4 (a) shows the steady state temperature profiles of straight (10,10), (15,15) and (20,20) 

SWNTs during the NEMD simulations. The linear temperature profiles almost collapse on top of 

each other. By setting ΔT=TH-TC, the thermal conductance of straight SWNTs was calculated to be 

6.18, 7.15 and 7.18 GWm-2K-1 for (10,10), (15,15) and (20,20) SWNTs, respectively. This 

corresponds to thermal conductivity of around 160 Wm-1K-1, in agreement with the previous MD 

studies on heat conduction of finite-length straight SWNTs [33]. Similarly, Fig. 4(b) shows the 



temperature profile of buckled SWNTs. The temperature jumps at the buckling region decrease with 

increasing diameter and their values are 5.44, 5.05 and 4.03 K for (10,10), (15,15) and (20,20) 

SWNTs, respectively. By taking these temperature jumps as ΔT, thermal resistance and conductance 

across the buckling deformation were obtained as shown in Fig. 5. The figure shows that the thermal 

resistance of a buckle increases linearly as the SWNT diameter decreases, and thus, through the 

diameter dependence of the strain energy discussed earlier [Fig. 3(d)], is proportional to the strain 

energy per atom in the buckle. The result also shows that, despite the large deformation of the 

buckled structure, the magnitude of the thermal resistance is moderate (tens of GWm-2K-1 in terms of 

thermal conductance), and is similar to that of heterotube junctions and point defects.  

To shed lights on the microscopic picture of thermal conductance across the buckled structure, 

we have performed spectral analysis of the lattice vibration. By performing equilibrium MD 

simulations of the straight and buckled (10,10) SWNTs at 300 K, the phonon energy spectral density 

was calculated by taking the power spectrum of the time history of the atomic velocity [34]. Figure 6 

compares the obtained energy spectral densities of the straight and buckled (10,10) SWNTs. Here, 

the power spectrum of the buckled SWNT was calculated at the center cell of the buckle (z=z0), 

where the influence of the strain on the spectrum is expected to be strong. Note, under the harmonic 

approximation and at the classical limit, the phonon energy spectral density is self-similar to local 

phonon density of states. Figure 6 shows that a dominant change in the spectrum by the buckling 

deformation occurs in the high frequency regime. The peak at around 50 THz of the straight SWNT, 

which originates from the optical phonon branch of the in-plane lattice vibration, splits into two 

difference peaks around 47 THz and 52 THz when SWNT is buckled. The former peak comes from 

the bottom compressed part of the buckle, whose frequency is upshifted since the compression, 

through anharmonic potential, gives rise to the bond stiffening. Similarly, the latter peak comes from 

the upper stretched part of the buckle, whose frequency is downshifted due to the bond softening. On 

the other hand, the change in the spectrum in the low frequency regime, composed of acoustic 

phonons that are active heat carrier, is relatively moderate. With elastic scattering of phonons at the 

buckled structure in mind, the nearly constant local density of states of the active heat carriers 

throughout the buckled structure should help maintaining the elastic transport channels even under 

the buckling deformation. This is consistent with the above observation that the thermal resistance 

across the buckle is small despite the large deformation at the buckle, though a proof of this logic 

would require more detailed modal analysis. 

 

4. Conclusions 

By using molecular dynamics methods, thermal conductance across a bending-buckling 

deformation was calculated. A local buckle was formed by mechanically bending a carbon nanotube 

at angle of 60°. Nonequilibium MD simulations show that thermal resistance increases 



approximately linearly with decreasing SWNT diameter, which is suggested to be due to the 

correlation between thermal resistance and averaged strain energy per atom in a buckle. Despite the 

highly stained deformation at the buckle, the thermal resistance was found to be moderate: similar to 

that of a point defect and heterotube junction, revealing a robust nature of carbon nanotube heat 

conduction to buckling deformation. 
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Figure 1: The procedure of molecular dynamics simulations. 
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Figure 2: A typical snapshot of (10,10) SWNTs after equilibration. 

  

 



 
Figure 3: (a) Dependence on the bending angle θ of the total strain energy Es of (10,10), (15,15), 

(20,20), (25,25) SWNTs. The slight kink in the profile denotes the formation of a buckling 

deformation. (b) Distribution of strain energy per unit cell Ez along the buckled SWNT. (c) The 

strain energy cumulated from z’=0 as described in Eq. (4). (d) The diameter dependence of the 

effective strain energy per atom Ês.  

  



 

 

Figure 4: The temperature profiles of (a) straight and (b) buckled (10, 10), (15, 15) and (20, 20) 

SWNTs during the nonequilibrium molecular dynamics simulations. 

  



 

Figure 5: SWNT-diameter dependence of thermal resistance (R=1/K) and conductance (K) of the 

buckled structure for a bending angle of 60°. Thermal resistance and conductance are denoted with 

squares and circles. 
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Figure 6: Energy spectral density of straight (dotted line) and buckled (solid line) (10, 10) SWNTs. 

The spectrum of the buckled SWNT is calculated at the center cell (z=z0). 
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