高真空 ACCVD 法を用いた単層カーボンナノチューブの低温合成 Low temperature growth of single-walled carbon nanotubes by high vacuum ACCVD method

井ノ上泰輝¹⁾, 岡部寛人¹⁾, 山本洋平¹⁾, Erik Einarsson¹⁾, 渡辺誠¹⁾, 丸山茂夫¹⁾ (東京大学・機械工学専攻¹⁾)

Abstract : A high vacuum alcohol catalytic CVD (ACCVD) apparatus has been developed to clarify the growth mechanism of single-walled carbon nanotubes. The temperature dependence of single-walled carbon nanotubes synthesis at low pressures was investigated. At reduced pressure, we succeeded in synthesis at low temperature. The diameter of the tubes synthesized at low pressure and temperature tends to be smaller than at standard conditions.

単層カーボンナノチューブ(SWNT) は特異な性質を持つナノスケールの炭素材料であり、様々な分野への応用が期待 されている.しかし、現在の方法では複数の構造の SWNT が同時に合成されてしまうことから、特定の構造の SWNT を 選択的に合成する方法の開発が課題となっている.合成方法の一つとしてアルコールを炭素源に用いたアルコール触媒 CVD 法(ACCVD 法)⁽¹⁾があり、高純度の SWNT 合成に適している.本研究では、高真空・低リークの環境を実現する新た な実験装置を開発し、CVD 環境を高度に制御しながら低圧で合成を行うことにより、将来の SWNT の構造制御、成長メ カニズムの解明に向けて知見を得ることを目的とする.

開発した高真空 ACCVD 装置の模式図を Fig. 1 に示す. Dip-coat 法⁽²⁾により触媒金属(Mo-Co 触媒)が表面に担持され たシリコン基板をチャンバー内に入れ,真空ポンプを用いて 1×10⁶ Pa まで排気を行った後,シリコン基板を交流通電に より加熱し,炭素源として一定の圧力でエタノール蒸気を導入することで SWNT を合成した.反応圧力,反応温度を変 化させて実験し,合成された試料をラマン分光装置,SEM,TEM,AFM を用いて観察した.

得られた試料のラマンスペクトルを Fig. 2 に示す. 1590 cm⁻¹付近に観測される G-band の形状により, 基板上の SWNT の有無を判断することが出来る. 反応圧力を下げることで SWNT が合成される下限の温度が低下する傾向が見られ,反応圧力 1×10⁻³ Pa において,従来より低い 450 ℃で SWNT が合成されたことが分かった(Fig.2 (a)). また,反応圧力の低下に伴い, G-band 強度が最大となる反応温度が低下する傾向が見られた. TEM による観察から,従来の ACCVD 法で合成された SWNT の平均直径が約 2 nm であるのに対して,低温,低圧の条件で合成された SWNT の平均直径は約 1.3nm と減少していることが分かった.

Fig. 1 Schematic images of (a) high vacuum ACCVD apparatus and (b) silicon heater.

参考文献 (1) S. Maruyama, et al., Chem. Phys. Lett. **360** (2002) 229 (2) Y. Murakami, et al., Chem. Phys. Lett. **377** (2003) 49

¹⁾ Taiki Inoue: Dept. of Mechanical Engineering, The Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656