NIR Fluorescence Spectroscopy and Structure Control of SWNTs

 Yuhei Miyauchi, Yasunori Hayashida, Yoichi Murakami, Shohei Chiashi, and Shigeo Maruyama}

Department of Mechanical Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Near infrared fluorescence measurements of single-walled carbon nanotubes (SWNTs) were performed. In addition to Raman scattering and absorption spectroscopy, the fluorescence spectroscopy would be a convenient and powerful method for the determination of the structure distribution of bulk SWNTs sample [1]. The structure distribution of SWNTs synthesized by Alcohol CCVD technique (ACCVD) [2,3] and other various generation techniques were determined by measuring fluorescence emitted from isolated SWNTs in aqueous suspension. In the case of ACCVD, the SWNTs had a dominant distribution in higher chiral angle region close to so-called armchair type and the chirality distribution tended to be more armchair side when diameters of SWNTs were smaller. Especially, the ACCVD sample at $650^{\circ} \mathrm{C}$ shows only two dominant peaks of chiral indices $(6,5)$ and $(7,5)$ as shown in Fig. 1. This narrower chirality distribution suggests that a strict control of diameters of thin SWNTs is a first step towards the chirality control of SWNTs.
[1] S. M. Bachilo et al., Science, 298 (2002) 2361-2366.
[2] S. Maruyama et al., Chem. Phys. Lett., 360 (2002) 229-234.
[3] Y. Murakami et al., Chem. Phys. Lett., 374 (2003) 53-58.

Corresponding Author: Shigeo Maruyama
E-mail: maruyama@photon.t.u-tokyo.ac.jp, Tel/Fax: +81-3-5800-6983

Fig. 1 (a) Contour plot of fluorescence intensities and (b) chirality distribution of ACCVD SWNTs synthesized at $650{ }^{\circ} \mathrm{C}$. The area of the circle at each (n, m) point denotes the relative intensity of the corresponding fluorescence peak.

