FT-ICR によるシリコンクラスターイオン(Si_n⁺, n = 10-30)と エチレン分子の化学反応特性^{*}

河野正道*1,井上修平*2,丸山茂夫*3

Chemisorption of Silicon Cluster Ions $(Si_n^+, n = 10-30)$ with Ethylene (C_2H_4) by Using FT-ICR Mass Spectrometer.

Masamichi KOHNO, Shuhei INOUE and Shigeo MARUYAMA*4

*5Department of Mechanical Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Mass-selected silicon cluster ions were levitated in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer and monitored during chemisorption reaction with ethylene (C₂H₄). Through measurements of "time-dependency" of this reaction process, large change of the reactivity depending on the number of absorbed ethylene was observed, in addition to the strong dependency to silicon cluster size. From Si₁₅⁺ to Si₁₈⁺ shows a special stability of Si_xE_y⁺ when x + y = 19, such as Si₁₅E₄⁺. The large decrease in the reactivity of Si_n⁺ was observed due to the contamination of hydrogen atom to Si_n⁺. Rate constants for the adsorption of the first C₂H₄ molecules on Si_n⁺ were estimated. The reaction kinetics data suggest that structural isomers are present for all clusters except Si₁₄⁺ in the size range investigated.

Key Words: FT-ICR, Chemical Reaction, Silicon Cluster, Mass-Spectroscopy, Laser-Vaporization

1. はじめに

薄膜生成プロセスなどで原子・分子クラスターの 挙動が重要な問題となり,理論的な興味に加えて,ク ラスターの基礎的な理解の必要性が高まってきてい る.クラスターとは原子が数個から数万個程度集まっ た状態のことをいい,原子・分子状態ともバルク状態 とも異なった特性を持つ⁽¹⁾ということがよく知られ ている.さらに数個から百個程度のサイズ領域におい ては,クラスターの原子数が1個変わるだけで,物性 が大きく変化する特徴も併せ持っている.一方,半導 体産業においてシリコン酸化膜や窒化膜が重要な役 割を果たすことはよく知られているが,近年半導体プ ロセスの微細化が進むにつれ,これらの膜の厚さはク ラスターの領域に近づいている.しかしながら薄膜レ ベルでの物理現象については不明な部分が多く,早急 な解明が望まれている.これに加えて,プラズマ CVD

*原稿受付 2004年1月5日.

*² 正員,東京大学大学院工学系研究科(〒113-8656 文京区本郷 7-3-1)[現:広島大学大学院工学研究科(〒739-8527 東広島市鏡山1-4-1)]

*3 正員 , 東京大学大学院工学系研究科 .

E-mail: maruyama@photon.t.u-tokyo.ac.jp

による薄膜成長プロセスに付着確率が大きくなるシ リコンクラスターを積極的に利用するような技術も 提案されている⁽²⁾.クラスターの構造に関しては古く から学問的興味の対象となっており近年のコンピュ ーターの発達によりある程度の理論予測が可能とな ってきているが、そのような理論的研究の検証あるい は、理論展開へのフィードバックをかけることのでき る実験的研究がますます必要とされている.

シリコンクラスターの反応性の研究は主にクラス ターイオンを中心に行われており、過去にはアセチレ ン⁽³⁾,エチレン⁽⁴⁻⁹⁾,アンモニア^(3,10-15),酸素^(3,9,16),-酸化炭素(1,17),水(3,18)などとの反応が報告されている. 10 量体以下の小さなサイズのクラスター(Si₁⁺~Si₇⁺) に CH₃SiH₃や SiD₄を反応させると付加物から水素分 子や重水素分子が 1~2 分子脱離したものが得られ ^(19,20), NO₂によるエッチング反応ではシリコン原子が 1 原子脱離して反応が進行することが知られている. 一方,50 量体程度までの大きなシリコンクラスター イオンについては、反応生成物は主に付加体であると いう結果が得られている(7).またこれらのサイズでは 異なる幾何構造を有する構造異性体が多数存在する ようになるので、反応性の測定によって構造異性体の 情報を得ることが出来る.理論面では, ab initio 法を 用いて原子数が 8 以下のクラスターについての幾何

^{*1} 正員,産業技術総合研究所(〒305-8564 つくば市並木1-2-1) [現:九州大学大学院工学研究院(〒812-8581 福岡市東区箱崎 6-10-1)]

構造を明らかにしたもの^(21,22) や LDA⁽²³⁾によるより 大きなクラスターの幾何構造に関する報告がある.ま た,化学反応については LMTO 法(Linear -Muffin-Tin-Orbital method)を用いた一酸化炭素⁽²⁴⁾, および水^(25, 26)との反応に関する報告やシリコン - 水 素混合系に関する DFT 解析⁽²⁷⁾も報告されている.

シリコンクラスターとエチレンの反応はこれまで, Smalley と丸山らのフーリエ変換型イオンサイクロト ロン共鳴質量分析装置 (Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer)を用いた研究例 ^(8,12)とJarroldらのイオンモビリティー装置を用いた研 究例^(7,9)が報告されている.両者の実験結果には相違 が見られたが、両実験例とも対象としたクラスターサ イズ領域が異なっていたため、同じクラスターサイズ 領域での検討が必要であった.また FT-ICR⁽²⁸⁻³⁰⁾は高 いクラスター保持能力を持つことから 反応過程の経 時変化の観察が可能である.さらに,極めて高い質量 分解能を持つことから、純粋なシリコンクラスターと それに水素原子が1個付着したクラスターを見分け ることが出来る.本研究ではFT-ICRを用いてレーザ - 蒸発・超音速膨張クラスタービーム源にて生成され たシリコンクラスターイオンとエチレン分子の化学 反応実験を行い、比較的長時間の反応によって反応が 停止した状態である最終生成物の観測や反応速度定 数を求めた .また水素原子がシリコンクラスターに付 着することによって,反応性が大きく低下すること, さらにレーザーをクラスターに照射することによる "レーザーアニーリング"⁽¹²⁾によって,幾何構造が変 化することを観測したので報告する.

2. 記 号

I_0 :	t=0 における Si _n ⁺ の相対的な量
<i>I</i> :	t=t における Si _n ⁺ の相対的な量
k:	反応定数
[C ₂ H ₄]:	エチレン分子の濃度
m:	クラスターサイズ
n:	クラスターサイズ
t:	反応時間

3. 実験装置及び方法

図 1 に FT-ICR 質量分析装置の全体図を示す.ICR セルは内径 84mm の超高真空用のステンレス管 (SUS316)の中に納められており,この管が NMR 用 の極めて均一な磁場を発生させる 5.826Tesla の超伝 導磁石を貫く設計となっている.2つのターボ分子ポ ンプ (300 l/s)と前段のターボ分子ポンプ (50 l/s) に

より背圧約 4×10⁻⁸ Pa (3×10⁻¹⁰Torr),実験時でもおよ そ 1.3×10⁻⁵ Pa (1×10⁻⁷ Torr)の高真空を実現する.シ リコンクラスターはレーザー蒸発・超音速膨張クラス タービーム源にて生成した .クラスター源で生成され たクラスターイオンはスキマーにより軸方向の速度 成分を持つクラスタービームとなる.減速管の中央付 近をクラスターが通過するときに瞬時に電圧を調整 し、一定電圧分の並進エネルギーを奪うことで減速さ せることができる.この電圧を調整することによりお およそのクラスター分布を選択することが可能であ る.その後5Vと10Vの電圧をかけられている2枚の 極板 (Front Door, Rear Door) 間において, Front Door を越え, Rear Door を越えることのできないエネルギ ーを持つクラスター群が ICR セル内部にトラップさ れる .ICR セル内部にトラップされたクラスターは数 分程度保持可能であり、ここで化学反応やレーザー光 解離実験など様々な試みが可能となっている.

4. 実験結果及び考察

図 2 に FT-ICR にて測定した一例としてシリコンク ラスター正イオン 15 量体 (Si_{15}^+) とエチレンの化学 反応過程を示す.図 2(a)はレーザー蒸発法によって生 成されたシリコンクラスター正イオンを FT-ICR に直 接導入することによって測定した質量スペクトルで ある.今回は $Si_{11}^+ \sim Si_{20}^+$ が効率よく ICR セルにトラッ プされるように減速管の電圧を調整した.

さらにヘリウムキャリアガスを清浄に保ち,サンプ ル表面を何度もレーザー蒸発させることで酸化物を おさえた.ICR セルにトラップされたクラスターイオ ンに対してアルゴンガス(1.3×10⁻³ Pa (1×10⁻⁵ Torr),5 秒)を ICR セルに導入することにより,その内部温 度を室温程度まで冷却した後,SWIFT (Stored Waveform Inverse Fourier Transform)と呼ばれる手法を

Fig.1 FT-ICR apparatus with direct injection cluster beam source.

用いて目的とするサイズのクラスターイオンのみを ICR セルに残したものが図 2(b)である.SWIFT 後, 再度アルゴンガス(1.3×10⁻³ Pa(1×10⁻⁵ Torr),5秒)に てクラスターイオンを冷却した後に,反応実験を行っ た.

図 2 (c), (d), (e) はそれぞれエチレンガス[1.3×10^3 Pa (1×10^{-5} Torr)]と 0.5, 5, 15 秒反応させた場合の結果 である.0.5 秒反応させた図 2(c)では,エチレン分子 が一個付着した Si₁₅E₁⁺が強く観測されていることが 分かる.5 秒反応させた場合,図 2(d)では,さらに反 応が進んだ様子がうかがえ,Si₁₅E₁⁺と Si₁₅E₄⁺が多く生 成されていることが分かる.

また 15 秒反応させた図 2(e)にて観測された反応生 成物は5秒反応させた場合の図2(d)とほぼ同様な結果 であった.従って今回の実験条件では5秒以降におい ては反応が大きく進行していないと考えることが出 来る.この最終状態の存在は,逆反応も含めた化学平 衡とも考えられるが,シリコンクラスターに関しては 多くの構造異性体が存在し,イオンドリフトチューブ を用いた反応実験⁽⁹⁾や FT-ICR を用いたレーザーアニ ーリング実験⁽¹²⁾によって異性体によって反応性が大

Fig. 2 Reaction process of Si_{15}^+ with C_2H_4 . (a) Mass spectra measured by the direct-injection. (b) After mass selection by SWIFT technique. (c) Reacted for 0.5 s. (d) 5 s. (e) 15 s. The $\text{Si}_x(\text{C}_2\text{H}_4)_y$ chemisorption products are marked with the symbol E_y .

きく異なることが知られていることから,各構造異性 体の反応が終わった状態であるとも考えられる.また 場合によってはエチレンの化学吸着後,その吸着サイ トに応じた異性化が起こっている可能性もある.

図 3 に各サイズのシリコンクラスター正イオン (Si⁺ n=11~20) とエチレンを 5~20 秒間反応させた 場合の最終反応生成物を示す いずれのサイズのクラ スターでも、これ以上の時間をかけて反応を行っても、 ほとんど反応の進行が確認できなかったものを示す. 一見して 12,15,16,17,20 量体では親クラスターはほと んど残っていないが 11,13,14,18,19 量体では相当量残 っている.特に Si13⁺はこの条件ではほとんど反応し ていない.反応生成物では,Si₁₁E₅⁺,Si₁₅E₁⁺,Si₁₅E₄⁺, Si₁₆E⁺₁, Si₁₆E⁺₃, Si₁₇E⁺₂, Si₁₈E⁺₁, Si₁₉E⁺₂, Si₂₀E⁺₁,などが安 定に残るマジックナンバーになっている.なかでも Si₁₅E₄⁺, Si₁₆E₃⁺, Si₁₇E₂⁺, Si₁₈E₁⁺,等のシリコン原子数と エチレン分子数の合計が19となる反応生成物が特異 的に安定的である点は非常に興味深く,吸着サイトが エチレンによって埋められているようなモデルを予 想させる.このスペクトルを詳細に検討した結果,一 部に水素原子が付着しているシリコンクラスターが 存在していることが分かった .図3のスペクトルにお いて, ピークに 印を付けたものがそれである. 一例 として図 4 に Si₁₈⁺の反応結果を示す.ここで図 4(a)

Fig. 3 Saturated reaction products of Si_n^+ (n = 10-20) with C_2H_4 . Signals marked in circle had almost 100% hydrogen atom.

の横軸を拡大したものが,図4(b)である.図4(b)の実 際に測定されたスペクトルに対して,図4(c)は同位体 分布を考慮して理論的に予測される Si18⁺のスペクト ルである.両者を比較すると図4(b)(c)のスペクトル形 状がほぼ同一で,図4(b)のスペクトルが505amuから 始まり図 4(c)と比較すると 1amu 分だけ質量が増加し ていることが分かる.このシフトの原因は,水素原子 のクラスターへの付着と考えられる.したがって, Si₁₈⁺に関しては,本来Si₁₈⁺は高い反応性を持つのに対 して,水素原子が付着すること(Si18H⁺)により反応性 が大きく低下して、エチレンとの未反応クラスターと して観察されると考えられる.同様な水素原子の付着 による反応性の低下は, Si₁₁⁺, Si₁₄E₁⁺, Si₁₅E₂⁺, Si₁₇E₁⁺ Si₁₉⁺, Si₁₉E₁⁺においても観測された.吸着サイトが水 素原子によって塞がれた結果、反応性が大きく低下し たものであると考えている.

図 5 は各サイズのシリコンクラスター正イオン (Sin⁺, n=21~30)とエチレンを 10 秒間反応させた場合 の最終反応生成物である. 11~20 量体の反応実験で は特徴的なマジックナンバーが観測されたのに対し て,21~30 量体においては特徴的な分布は観測され なかった.この理由として,これらのサイズ領域のク ラスターには,反応性に富んだ吸着サイトが特にある 訳でもなく,単なる吸着反応であるためであると考え

Fig. 4 Saturated reaction products of Si_{18}^{+} with C_2H_4 (a). Expanded view of (a) is shown in (b). (c) shows the ideal mass distribution of Si_{18}^{+} calculated from natural isotope distribution

られる.

FT-ICR では SWIFT の特徴を生かし,反応によって 生成された反応生成物に対して化学反応実験を行う ことが出来る.図6および図7はSi₁₅⁺にエチレン分 子が一個吸着した,Si₁₅E₁⁺とエチレン分子の反応結果 を示したものである.図6(a)はSWIFT 直後のもので り,このSi₁₅⁺とエチレンを15秒反応させたのが図6(b) である.Si₁₅⁺とエチレンを15秒反応させたのが図6(b) である.Si₁₅⁺とエチレンの反応では15秒以上反応さ せても,反応の進行は観測されなかった.SWIFT に よって,この反応生成物Si₁₅E₁⁺のみをICR セルに残 した様子を示したのが,図6(c)である.そしてこの Si₁₅E₁⁺とエチレンを5秒および10秒間反応させたと きの結果が,図6(d)および図6(e)である.スペクトル を見ての通り,Si₁₅E₁⁺とエチレンの反応は観測されな かった.

図 6 における Si₁₅E₁⁺は Si₁₅⁺とエチレンをこれ以上, 反応が進まなくなるまで十分に時間をかけて生成し たものであるが,図 7 に Si₁₅⁺とエチレンを 1 秒間だ け反応させた後(図 7(b))に,SWIFT によって ICR セルに Si₁₅E₁⁺のみを残した様子を示す図 7(c).この Si₁₅E₁⁺とエチレンを 1,5,10 秒と反応させたものが図 7(d),(e),(f)である.今回は Si₁₅E₁⁺とエチレンが反応し, Si₁₅E₄⁺等の反応生成物を生成していることが分かる. 一方,反応を示さない Si₁₅E₁⁺のシグナルも観測される ことから,エチレンと反応しなかった Si₁₅E₁⁺も同時に

Fig.5 Saturated reaction products of Si_n^+ (n = 21-30) with C_2H_4 .

Fig. 6 Further reaction of selected once reacted product, Si₁₅E₁⁺. (a) After the mass selection by SWIFT technique. (b) Reacted with C₂H₄ for 15sec. (c) After the second mass selection. Reaction of Si₁₅E₁⁺ with C₂H₄ for 5s (d) and 10s (e).

存在していることが分かる .このような違いが観測さ れた理由は以下のように考えられる .Si₁₅⁺とエチレン を 15 秒反応させて生成された Si₁₅E₁⁺は , それ以上エ チレンと反応しない反応生成物であったのに対して , 1 秒間だけの反応にて得られた Si₁₅E₁⁺にはそれ以上反 応しないものと ,さらに反応が進行するものとが共存 していると考えられる . さらに , Si₁₅E₁⁺とエチレンの 反応によって ,Si₁₅E_n⁺ (n = 2~6) の 5 種類もの反応生 成物が観測されたことを考慮すると ,最低でも 6 種類 以上の Si₁₅E₁⁺が存在することを示唆する結果である .

FT-ICR によるシリコンクラスターとエチレンの反応速度式は,式(1)のように表すことが出来るが,エ チレン分子の数がシリコンクラスター数に比べて遙かに多いためエチレン分子の項は定数と見てよく,時間の関数ではないため式(2)のような簡単な反応速度式に近似して表すことが出来る.

$$-\frac{\mathbf{d}[\mathbf{Si}_{n}^{+}]}{\mathbf{dt}} = \mathbf{k}[\mathbf{Si}_{n}^{+}][\mathbf{C}_{2}\mathbf{H}_{4}]$$
(1)

$$\ln(I/I_{o}) = -k [C_{2}H_{4}] t$$
 (2)

ここでt は反応時間を表し I_0 とI はそれぞれ時間t=0と t=t における Si_n⁺の相対的な量である [C₂H₄]はエチ レン分子の濃度を表しており *k* が反応定数である.こ

Fig.7 Further reaction of selected once reacted product, $Si_{15}E_1^+$. (a) After the mass selection by SWIFT technique. (b) Reacted with C_2H_4 for 1.0s. (c) After the second mass selection. Reaction of $Si_{15}E_1^+$ with C_2H_4 for 5s (d) and 10s (e).

の式より縦軸に $\ln(I/I_0)$,横軸に時間のプロットを書け ば傾き- $k[C_2H_4]$ の直線が期待される.しかし今回の測 定から求めた $\ln(I/I_0)$ と時間のプロットを描いてみる と Si_{14}^+ 以外は直線にならないことが分かった.

図 8 に典型的な例として Si₂₀⁺のプロットを示す. プロットが直線を示さず,傾きが大きい成分と小さい 成分に分けられる.従って,この結果は Si₂₀⁺には速 い反応速度定数を持つものと,遅い反応速度定数を持 つ2 種類以上のものが存在することを示唆している. この様な振る舞いをみせる原因としては,構造異性 体の存在,内部温度の高いクラスターの存在,化 学平衡,の3 つの可能性が考えられる.現段階におい て,筆者らは構造異性体の存在がその原因と考えてい るが,この件に関しては更なる検証実験が必要と思わ れる.

図 9 は今回の測定結果から求めたシリコンクラス ターとエチレン分子の反応速度定数を各サイズに対 して相対的に比較したものである Jarrold らがイオン モビリティーを用いて測定したシリコンクラスター イオンとエチレンの反応速度定数⁽⁷⁾と比較してみる と Si₁₃⁺が極端に小さく,11,14 量体のそれがその次に 小さいことから,その傾向は良くにていると結論出来

Fig. 8 Reaction kinetics of Si_{20}^+ with C_2H_4 .

Fig. 9 Rate constant of first C₂H₄ chemisorption.

る.Si13⁺の反応性が極端に低いことについては,計算 面からのアプローチがいくつかある.例えば幾何構造 が安定であることが示唆されているが,幾何構造の安 定性と化学反応性には必ずしも相関がある訳で無い ことから、はっきりとした理由は未だに分かっていな い.またシリコンクラスターの反応定数がその内部温 度と深い関わりを持つことが知られていることから, 今後クラスターの冷却具合と反応定数の相関を実験 的に調べる必要があると考えている.FT-ICR の特徴 を生かした実験として,ICR セルにトラップしたクラ スターに対してレーザーを照射し,クラスターを加熱 させる事が可能な,レーザー加熱実験が挙げられる.

図 10(a)はレーザー蒸発法によって生成されたシリ コンクラスターを FT-ICR に直接導入することによっ て測定した質量スペクトルである.図 10(b)は SWIFT によって Si₃₆⁺, Si₃₉⁺, Si₄₂⁺のみを ICR セルに残した状態 を示している.この 3 つのサイズのクラスターとエチ

Fig. 10 Laser annealing study of Si_{36}^+ , Si_{39}^+ and Si_{42}^+ . (a) Mass spectra measured by the direct-injection. (b) After the mass selection by SWIFT technique. (c) Reaction of clusters with C_2H_4 for 2.0s without laser annealing. (d) Reaction of clusters with C_2H_4 for 2.0 s. The clusters were annealed prior to reaction by irradiation of the third harmonics of Nd:YAG laser.

レンを 2 秒間反応させた結果が図 10(c)である . Si₃₆+ がエチレンと反応し Si₃₆E₁⁺を生成しているが,反応し ていない Si₃₆⁺もある程度存在していることが分かる. また Si₃₉⁺もエチレンと反応し Si₃₉E₁⁺, Si₃₉E₂⁺を生成し ている.これは,Si₃₆⁺およびSi₃₉⁺に反応性が高い幾何 構造を持つものと反応性が低い幾何構造を持つ構造 異性体が存在していることを示唆している.図 10(d) は SWIFT によって ICR セルに残された Si_{36}^+ , Si_{39}^+ , Si₄₂⁺に対して, YAG レーザーの 3 倍波(355nm, 2mJ/pulse, スポット径 d=5mm)を 15 秒照射すること によってクラスターを加熱した後に、再度アルゴンガ スで冷却し、エチレンと2秒間反応させた結果である. レーザー加熱を行わなかった場合、ある程度の割合で Si₃₆⁺がエチレンと反応を示さなかったのに対して,ほ とんどの Si₃₆⁺がエチレンと反応していることが分か る. 一方, Si₃₉⁺に着目すると Si₃₉E₁⁺がほとんど生成さ れていない結果が得られた.これは,レーザーでクラ スターを加熱することによりクラスターの構造変化 が起き,その結果 Si₃₆⁺ではより反応性が高い幾何構 造へ,一方 Si³ではより反応性が低い幾何構造へ変 化したものと思われる(12).

5. まとめ

シリコンクラスター(Si_n⁺, $n = 10 \sim 30$)とエチレンと の化学反応実験を FT-ICR 質量分析装置にて行い,反 応の経時変化や ,またそれ以上の時間をかけて反応さ せてもほとんど反応が進行しない 反応の最終状態を 観測した .クラスターサイズが比較的小さなサイズ領 域では、反応生成物に前後の大きさに比べて著しく生 成されやすい,いわゆる魔法数(マジックナンバー) 的なものが観測された.特にシリコン原子数とエチレ ン分子数の合計が19となる位置で常に強いピークが 観測されたことからも Si_{19-n}(C₂H₄)_n+の反応生成物が特 異的に安定的であると考えられる.また,質量スペク トルの詳細な解析から水素原子がクラスターに付着 すると,その反応性が大きく低下する.FT-ICR の特 徴である SWIFT を用いた実験から, Si₁₅E₁⁺の様に同 じ反応生成物であってもそれ以上反応が進行しない ものと、さらに反応が進行するものがある.またシリ コンクラスターとエチレン分子の反応速度定数を求 め、イオンドリフト法にて得られた結果と比較を行っ た結果,ほぼ同様な傾向が得られた.Si₃₆⁺,Si₃₉⁺,Si₄₂⁺ に対してレーザー過熱を行った結果,加熱によりその 幾何構造が変化していることが確認できた.

従来は,FT-ICR と Ion mobility の実験結果には装置 の特性に依る結果の相違が存在するとされてきたが, 本研究によりそのような相違がないことが明らかに なった.シリコンクラスターの反応性に関する実験結 果は,最近発展しつつある量子分子動力学法などによ る計算の検証のための基礎データとなることが期待 されると同時に,近年のナノテクノロジーにおいてこ れらのクラスターやその反応物を用いた様々な機能 性材料を合成する上での重要なステップとなると期 待される.

文 献

- (1) Jarrold, M. F., Science, 252, (1991), 1085-1092.
- (2) Chae, Y. K., ほか3名, J. Appl. Phys., 89-12, (2001), 8311-8315.
- (3) Creasy, W. R., ほか2名, J. Phys. Chem., 91, (1987), 2848-2855.
- (4) Jarrold, M. F. & Bowes, J. E., Z. Phys. D. 12, (1989), 551-554.
- (5) Jarrold, M. F., ほか2名, J. Chem. Phys., 90, (1989), 3615-3628.
- (6) Chelikowsky, J. R. & Phillips, J. C., Phys. Rev. Lett., 63, (1989), 1653-1655.
- (7) Creegan, K. & Jarrold, M. F., J. Am. Chem. Soc., 112, (1990), 3768-3773.
- (8) Anderson, L. R., ほか2名, Chem. Phys. Lett., 176, (1991), 348-354.
- (9) Jarrold, M. F. & Bowes, J. E., J. Chem. Phys., 96, (1992), 9180-9190.
- (10) Elkind, L., ほか4名, J. Chem. Phys., 87, (1987), 2397-2399.
- (11) Alford, J. M. & Smalley, R. E., Mater. Res. Soc. Symp. Proc. 131,(1989),3.
- (12)Maruyama, S., ほか2名, J. Chem. Phys., 93, (1990), 5349-5351.
- (13) Alford, M. ほか2名, J. Chem. Phys., 94, (1991), 2618-2630.
- (14) Ray, U. & Jarrold, M. F., J. Chem. Phys., 93, (1990), 5709-5718.
- (15) Jarrold, M. F., ほか2名, J. Chem. Phys., 94, (1991), 3607-3618.
- (16) Jarrold, M. F., ほか2名, J. Chem. Phys., 93, (1990), 224-229.
- (17) Jarrold, M. F. & Bowers, J. E., J. Am. Chem. Soc., 111, (1989), 1979-1986.
- (18) Ray, U. & Jarrold, M. F., J. Chem. Phys., 94, (1991), 2631-2639.
- (19) Mandich, M. L., ほか 2 名, J. Chem. Phys., 86, (1987), 4245-4257.
- (20) Creasy W. R., ほか2名, J. Phys. Chem., 91, (1987) 2848-2855.
- (21) Raghavachari, K. & Rohlfing, C. M., J. Chem. Phys., 89-4, (1988), 2219-2234.
- (22) Ramakrishna, M. & Bahel, A., J. Chem. Phys., 104, (1996), 9833-9840.
- (23)Ho, K-M., ほか2名, Nature, 392-9, (1998), 582-585.
- (24)Li, B-X. & Cao, P-L., J. Phys. Con. Matt., 12, (2000), 8357-8368.
- (25) Li, B-X. & Cao, P.-L., J. Phys. Con. Matt., 13, (2001), 1-10.
- (26) Li, B-X. & Cao, P.-L., Phys. Lett. A, 275, (2000), 274-280.
- (27) Katircioğlu, Ş. & Erkoç, Ş., Physica E, 9, (2001), 314-320.
- (28) Maruyama, S., ほか 2 名, Rev. Sci. Inst., 61-12, (1990), 3686-3693.
- (29)丸山茂夫, ほか3名,機論 (B編)65-639, (1999), 3791-3798.
- (30) Maruyama, S., ほか2名, Therm. Sci. Eng., 7-6, (1999), 69-74.