SWNT 生成用試料からのレーザー蒸発クラスター生成と化学反応

(東大工) 河野正道,井上修平,向江俊和,丸山茂夫

【はじめに】未だに解明されていない単層カーボンナノチューブ(SWNT)の生成機構は興味深い問題であるが,SWNTを生成する際には触媒として,NiやCo等の金属の存在が不可欠であることから,炭素とこれら金属の間にどの様な相互作用があるかを知ることはSWNT生成機構解明の大きな手がかりとなる.本研究ではSWNTを生成する際に用いられる金属炭素混合試料を用いてレーザー蒸発超音速膨張クラスタービーム源で生成した金属炭素混合クラスター(MCn,M=Ni or Co)および炭素クラスター(Cn)の質量分析および化学反応実験をFT-ICR 質量分析装置にておこない,これら金属が炭素試料に混合されることにより,生成された Cnの質量分布や幾何構造におよぼす影響や,生成されたMCnの幾何構造等を検討したので報告する.

【実験】FT-ICR 質量分析は強磁場中でのイオンのサイクロトロン運動に着目した質量分析である. MC_n および C_n は, Ni/Co 炭素混合試料 (Ni および Co の含有量はそれぞれ 0.6%) および Ni/Y 炭 素混合試料 (Ni および Y の含有量はそれぞれ 4.2%および 1.0%) を試料としてレーザー蒸発超音 速膨張クラスター源によって生成され, 6Tesla の超伝導磁石内の ICR セルに直接導入される.な お、これら試料中における金属の含有量は,大量合成法で生成する場合に SWNT を最も生成しや すいとされている量である.この際にヘリウムとともに超音速で飛行するクラスターイオン群を 減速し,電場を用いることによって ICR セル内にトラップする。トラップした後にクラスターの 内部温度を下げるため Ar ガス(1×10⁻⁵Torr 室温)を導入し、その後 NO ガス(1×10⁻⁷Torr 室温)を導 入して、クラスターの反応実験を行った。

【結果と考察】Fig.1 に Ni/Co 炭素混合試料を試料としたレーザー蒸発超音速膨張クラスター源によって生成された NiC₃₈(NO)⁻および CoC₃₈(NO)⁻の反応過程を示す.Fig.1(a)は ICR セル内にトラップされたクラスター負イオンの質量スペクトルである.Fig.1(b)はクラスターを NO と 2 秒間反応

させた結果であるが, NiC₃₈,CoC₃₈が NO と反応し NiC₃₈(NO) および CoC₃₈(NO) が生 成されていることがわかる.また奇数の炭 素クラスターも一部が NO と反応し, C43(NO)の生成も観測された.10秒反応さ せた結果 Fig.1(c)では, ほとんどすべての MC^{*}が NO と反応したことがわかる.過去 におこなった LaCn および Cn の反応実験の 結果と合わせると NO とクラスターの反応 性が MC_n(M = Ni or Co) > 奇数の C_n > 偶数 \mathcal{O} C_n > LaC_n(n = 偶数, n 36)の順で高い ことがわかった.以上の結果から今回我々 が生成した MC_n (M = Ni or Co)の構造に ついて考察すると,金属原子が内包されて いることはありえず,恐らく炭素ゲージの 不完全なサイトに付着している外付構造 であると考えられる.また生成されたクラ スターの質量分布と純粋な炭素試料を用 いて生成したときのクラスターの質量分 布とを比較すると、正イオンに於いて C₆₀+ や C₇₀⁺の生成量が増える傾向がみられた. また負イオンにおいては,C₃₆以上の炭素 原子数が偶数個の C_nが選択的に良く生成 されることが観測された.

Fig.1 FT-ICR mass spectra of the reaction process of NiC_{38} , CoC_{38} and C_{43} . Notice all pure carbon spectra are out of scale.