

Calculation Conditions and Nucleation Rates											
Label	ε _{INT} [×10 ⁻²¹ J]	θ [deg]	T _{ave} [K]	J _{sim} [cm ⁻² s ⁻¹]	J _{th} [cm ⁻² s ⁻¹]						
E1	0.426	135.4	108	6.52×10 ²⁰	48.6×10 ²⁰						
E2	0.612	105.8	114	34.5×10 ²⁰	44.7×10 ²⁰						
E3	0.798	87.0	120	57.6×10 ²⁰	5.54×10 ²⁰						
Simulated Classical Theory											
Yasuoka & Matsumoto: Homogeneous MD: J _{sim} was 7 orders larger than J _{th}											

(d) Sc₂@C₈₄

(f) MWNT

Group	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period																		
	1																	2
1	н																	He
_	1.008														-		_	4.003
	3	4											5	6	7	8	9	10
2	LI	Be											B	C	N	0	F	Ne
-	0.941	9.012				_							10.81	12.01	14.01	16.00	19.00	20.18
3	No	Ma											A1	Si	P	S	č	Ar
-	22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
-	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	К	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	85.47	87.62	88.91	91.22	92.91	95.94	99.00	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
	55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	*	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
-	132.9	137.3		178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	210.0	210.0	222.0
-	8/ Ex	88 Ro	**	104 Ung	Unn	Unb	107	Uno	Upo	Uun	Unn	Unb						
	222	226		261	262	262	262	265	266	260	222	222						
-	223	220		201	202	203	202	203	200	209	212	211						
_			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	1
* Lanthanides		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu		
		138.9	140.1	140.9	144.2	145	150.4	152	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0		
** Actinides		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103		
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		
		227	232	231	238	237	239	243	247	247	252	252	257	258	259	262		
Studied Metal Atoms																		

