3. Calculation of Equilibrium Properties

- 3.1 Thermodynamic Properties Temperature, Internal Energy and Pressure Free Energy and Entropy
- 3.2 Calculation of Dynamic Properties Diffusion Coefficient Thermal Conductivity
 - Shear Viscosity
 - Infrared Absorption Coefficient

Internal Energy or Total EnergyU =
$$E_k + E_p = \frac{3}{2}Nk_BT + \left\langle \sum_i \sum_{j>i} \phi(\mathbf{r}_{ij}) \right\rangle$$
Remember Thermodynamics for Ideal Gas $U = E_k = \frac{n_f}{2}N_Ak_BT = \frac{n_f}{2}R_0T$ per mol $u = \frac{U}{m'} = \frac{n_f}{2}\frac{R_0}{m'}T = \frac{n_f}{2}RT$ per massk_B: Boltzmann Constant, 1.38066×10⁻²³ J/KN_A: Avogadro Number, 6.02205×10²³ J/KN_A: Avogadro Number, 6.02205×10²³ J/KN_A: Na: Avogadro Number, 6.02205×10²³ J/KN_A: Na: Avogadro Number, 6.02205×10²³ J/KN_A: Na: Avogadro Number, 6.0205×10²³ J/KN_A: Na!: Avogadro Number, 6.0205×10²³ J/KN_A: Na!: Avogadro Number, 6.0205×10²³ J/K

Pressure by virial theorem

$$P = \frac{N}{V} k_{\rm B} T - \frac{1}{3V} \left\langle \sum_{i} \sum_{j>i} \frac{\partial \phi}{\partial r_{ij}} \cdot r_{ij} \right\rangle$$
Thermodynamics for Ideal Gas

$$P = \frac{N}{V} k_{\rm B} T$$

$$PV = nN_{A}k_{B}T = nR_{0}T \qquad \text{For n mol}$$

$$P = \frac{nN_{A}}{V} k_{B}T = \rho k_{B}T \qquad \rho: \text{ Number density}$$

Radial Distribution Function

Radial Distribution Function (Pair Correlation Function)

$$\rho g(r) = \frac{1}{N} \left\langle \sum_{i}^{N} \sum_{j \neq i}^{N} \delta[r - r_{ij}] \right\rangle$$
$$g(r) = \frac{\left\langle N(r, \Delta r) \right\rangle}{1}$$

$$r = \frac{1}{\frac{1}{2}N\rho V(r,\Delta r)}$$

Ratio of a local density $\rho(r)$ to the system density ρ

$$\begin{aligned} \frac{E_p}{N} &= 2\pi\rho \int_0^\infty \phi(r)g(r)r^2 dr \\ \frac{E_p}{N} &= 2\pi\rho \int_0^r \phi(r)g(r)r^2 dr + 2\pi\rho \int_{r_c}^\infty \phi(r)g(r)r^2 dr \\ \frac{E_p}{N} &= 2\pi\rho \int_0^r \phi(r)g(r)r^2 dr + 2\pi\rho \int_{r_c}^\infty \phi(r)g(r)r^2 dr \\ \frac{E_p}{N} &= \frac{\widetilde{E}_p}{N} + E_{pLR} \\ E_{pLR} &\approx 2\pi\rho \int_{r_c}^\infty \phi(r)r^2 dr \\ E_{pLR}^* &= \frac{8\pi\rho^*}{3(r_c^*)^3} \left(\frac{1}{3(r_c^*)^6} - 1\right) \approx -\frac{8\pi\rho^*}{3(r_c^*)^3} \end{aligned}$$
 For Lennard-Jones

Test Particle Method(1)
$\mu = -T \left(\frac{\partial S}{\partial N} \right)_{EV} = -kT \left(\frac{\partial \ln \Omega}{\partial N} \right)_{EV}$
$\mu_e = \mu - \mu_{ig} = -kT \ln \left[\frac{1}{\langle kT \rangle^{3/2}} \left\langle (kT_{in})^{3/2} \exp \left[-\frac{U_r}{kT_{in}} \right] \right\rangle \right]$
$kT_{in} = 2E_k /(3N)$ Instantaneous Temperature
$\mu_{ig} = -kT \ln[1/(\rho \Lambda^3)]$ Chemical Potential for Ideal Gas
$\Lambda = \sqrt{h^2 / (2\pi m kT)}$ Thermal De Broglie Wavelength
$U_t = U_{t,MD} - \frac{16\pi}{3} \frac{\rho^*}{r_{rc}^{r+3}}$ Twice long-range correction

Property	Definition	Statistical Mechanical Green-Kubo Formula	With Einstein Relation For large t	
Diffusion coefficient	$\dot{n} = -D \frac{\partial n}{\partial x}$	$\frac{1}{3}\int_0^\infty \left< \mathbf{v}_i(t) \cdot \mathbf{v}_i(0) \right> dt$	$\frac{1}{6t} \left\langle \left \boldsymbol{r}_{i}(t) - \boldsymbol{r}_{i}(0) \right ^{2} \right\rangle$	
Thermal conductivity ¹	$q = -\lambda \frac{\partial T}{\partial x}$	$\frac{V}{k_{_B}T^2} \int_0^\infty \left\langle \tilde{q}_\alpha(t) \cdot \tilde{q}_\alpha(0) \right\rangle dt$	$\frac{V}{k_{B}T^{2}2t}\left\langle \left(\delta\varepsilon_{\alpha}(t)-\delta\varepsilon_{\alpha}(0)\right)^{2}\right\rangle$	
Shear viscosity ²	$F = \mu \frac{\partial U}{\partial x}$	$\frac{V}{k_{_B}T} \int_{_0}^{_\infty} \left\langle \widetilde{p}_{\alpha\beta}(t) \cdot \widetilde{p}_{\alpha\beta}(0) \right\rangle dt$	$\frac{V}{k_{B}T2t}\left\langle \left(\widetilde{D}_{\alpha\beta}(t) - \widetilde{D}_{\alpha\beta}(0) \right)^{2} \right\rangle$	
$\widetilde{q}_{\alpha} = \frac{d\delta\varepsilon_{\alpha}}{dt}, \delta\varepsilon_{\alpha} = \frac{1}{V}\sum_{i} r_{\alpha}(\varepsilon_{i} - \langle\varepsilon_{i}\rangle), \varepsilon_{i} = \frac{m_{i}v_{i}^{2}}{2} + \frac{1}{2}\sum_{j\neq i}\phi(r_{ij}), \alpha = x, y, z$ $\text{NVE only.} \widetilde{p}_{\alpha\beta} = \frac{1}{V} \left(\sum_{i} m_{i}v_{i\alpha}v_{i\beta} + \sum_{i} \sum_{j\neq i} r_{ij\alpha}f_{ij\beta}\right), \widetilde{D}_{\alpha\beta} = \frac{1}{V}\sum_{i} m_{i}r_{i\alpha}v_{i\beta}, \alpha\beta = xy, yz, zx$				
Dynamic Properties				

